Articles | Volume 14, issue 1
https://doi.org/10.5194/dwes-14-1-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/dwes-14-1-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sustainability characteristics of drinking water supply in the Netherlands
Jolijn van Engelenburg
CORRESPONDING AUTHOR
Asset Management Department, Vitens NV, P.O. Box 1205, 8001 BE
Zwolle, the Netherlands
Erik van Slobbe
Water Systems and Global Change Group, Wageningen University and
Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
Adriaan J. Teuling
Hydrology and Quantitative Water Management Group, Wageningen
University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
Remko Uijlenhoet
Hydrology and Quantitative Water Management Group, Wageningen
University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
Department of Water Management, Civil Engineering and Geosciences Faculty, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands
Petra Hellegers
Water Resources Management Group, Wageningen University and
Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
Related authors
No articles found.
Xuan Chen, Job Augustijn van der Werf, Arjan Droste, Miriam Coenders-Gerrits, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 29, 3447–3480, https://doi.org/10.5194/hess-29-3447-2025, https://doi.org/10.5194/hess-29-3447-2025, 2025
Short summary
Short summary
The review highlights the need to integrate urban land surface and hydrological models to better predict and manage compound climate events in cities. We find that inadequate representation of water surfaces, hydraulic systems and detailed building representations are key areas for improvement in future models. Coupled models show promise but face challenges at regional and neighbourhood scales. Interdisciplinary communication is crucial to enhance urban hydrometeorological simulations.
Claudia C. Brauer, Ruben O. Imhoff, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2025-1712, https://doi.org/10.5194/egusphere-2025-1712, 2025
Short summary
Short summary
In lowland catchments, flood severity is determined by both the amount of rain and how wet the soil is prior to the rain event. We investigated the trade-off between these two factors and how this affects peaks in the river discharge, for both the current and future climate. We found that with climate change floods will increase in winter and spring, but decease in fall. The total number and severity of floods will increase. This can help water managers to design climate robust water management.
Nathalie Rombeek, Markus Hrachowitz, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2025-1502, https://doi.org/10.5194/egusphere-2025-1502, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
On 29 October 2024 Valencia (Spain) was struck by torrential rainfall, triggering devastating floods in this area. In this study, we quantify and describe the spatial and temporal structure of this rainfall event using personal weather stations (PWSs). These PWSs provide near real-time observations at a temporal resolution of ~5 min. This study shows the potential of PWSs for real-time rainfall monitoring and potentially flood early warning systems by complementing dedicated rain gauge networks.
Luuk D. van der Valk, Oscar K. Hartogensis, Miriam Coenders-Gerrits, Rolf W. Hut, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2025-1128, https://doi.org/10.5194/egusphere-2025-1128, 2025
Short summary
Short summary
Commercial microwave links (CMLs), part of mobile phone networks, transmit comparable signals as instruments specially designed to estimate evaporation. Therefore, we investigate if CMLs could be used to estimate evaporation, even though they have not been designed for this purpose. Our results illustrate the potential of using CMLs to estimate evaporation, especially given their global coverage, but also outline some major drawbacks, often a consequence of unfavourable design choices for CMLs.
Devi Purnamasari, Adriaan J. Teuling, and Albrecht H. Weerts
Hydrol. Earth Syst. Sci., 29, 1483–1503, https://doi.org/10.5194/hess-29-1483-2025, https://doi.org/10.5194/hess-29-1483-2025, 2025
Short summary
Short summary
This paper introduces a method to identify irrigated areas by combining hydrology models with satellite temperature data. Our method was tested in the Rhine basin and aligns well with official statistics. It performs best in regions with large farms and less well in areas with small farms. Observed differences to existing data are influenced by data resolution and methods.
Janneke O. E. Remmers, Rozemarijn ter Horst, Ehsan Nabavi, Ulrike Proske, Adriaan J. Teuling, Jeroen Vos, and Lieke A. Melsen
EGUsphere, https://doi.org/10.5194/egusphere-2025-673, https://doi.org/10.5194/egusphere-2025-673, 2025
Short summary
Short summary
In hydrological modelling, a notion exists that a model is a neutral tool. However, this notion has several, possibly harmful, consequences. In critical social sciences, this non-neutrality in methods and results is an established topic of debate. We propose that in order to deal with it in hydrological modelling, the hydrological modelling network can learn from, and with, critical social sciences. The main lesson, from our perspective, is that responsible modelling is a shared responsibility.
Luuk D. van der Valk, Oscar K. Hartogensis, Miriam Coenders-Gerrits, Rolf W. Hut, Bas Walraven, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2024-2974, https://doi.org/10.5194/egusphere-2024-2974, 2025
Short summary
Short summary
Commercial microwave links (CMLs), part of mobile phone networks, transmit comparable signals as instruments specially designed to estimate evaporation. Therefore, we investigate if CMLs could be used to estimate evaporation, even though they have not been designed for this purpose. Our results illustrate the potential of using CMLs to estimate evaporation, especially given their global coverage, but also outline some major drawbacks, often a consequence of unfavourable design choices for CMLs.
Nathalie Rombeek, Markus Hrachowitz, Arjan Droste, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2024-3207, https://doi.org/10.5194/egusphere-2024-3207, 2024
Short summary
Short summary
Rain gauge networks from personal weather stations (PWSs) have a network density 100 times higher than dedicated rain gauge networks in the Netherlands. However, PWSs are prone to several sources of error, as they are generally not installed and maintained according to international guidelines. This study systematically quantifies and describes the uncertainties arising from PWS rainfall estimates. In particular, the focus is on the highest rainfall accumulations.
Abbas El Hachem, Jochen Seidel, Tess O'Hara, Roberto Villalobos Herrera, Aart Overeem, Remko Uijlenhoet, András Bárdossy, and Lotte de Vos
Hydrol. Earth Syst. Sci., 28, 4715–4731, https://doi.org/10.5194/hess-28-4715-2024, https://doi.org/10.5194/hess-28-4715-2024, 2024
Short summary
Short summary
This study presents an overview of open-source quality control (QC) algorithms for rainfall data from personal weather stations (PWSs). The methodology and usability along technical and operational guidelines for using every QC algorithm are presented. All three QC algorithms are available for users to explore in the OpenSense sandbox. They were applied in a case study using PWS data from the Amsterdam region in the Netherlands. The results highlight the necessity for data quality control.
Adriaan J. Teuling, Belle Holthuis, and Jasper F. D. Lammers
Hydrol. Earth Syst. Sci., 28, 3799–3806, https://doi.org/10.5194/hess-28-3799-2024, https://doi.org/10.5194/hess-28-3799-2024, 2024
Short summary
Short summary
The understanding of spatio-temporal variability of evapotranspiration (ET) is currently limited by a lack of measurement techniques that are low cost and that can be applied anywhere at any time. Here we show that evapotranspiration can be estimated accurately using observations made by smartphone sensors, suggesting that smartphone-based ET monitoring could provide a realistic and low-cost alternative for real-time ET estimation in the field.
Charles Nduhiu Wamucii, Pieter R. van Oel, Adriaan J. Teuling, Arend Ligtenberg, John Mwangi Gathenya, Gert Jan Hofstede, Meine van Noordwijk, and Erika N. Speelman
Hydrol. Earth Syst. Sci., 28, 3495–3518, https://doi.org/10.5194/hess-28-3495-2024, https://doi.org/10.5194/hess-28-3495-2024, 2024
Short summary
Short summary
The study explored the role of serious gaming in strengthening stakeholder engagement in addressing human–water challenges. The gaming approach guided community discussions toward implementable decisions. The results showed increased active participation, knowledge gain, and use of plural pronouns. We observed decreased individual interests and conflicts among game participants. The study presents important implications for creating a collective basis for water resources management.
Athanasios Tsiokanos, Martine Rutten, Ruud J. van der Ent, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 28, 3327–3345, https://doi.org/10.5194/hess-28-3327-2024, https://doi.org/10.5194/hess-28-3327-2024, 2024
Short summary
Short summary
We focus on past high-flow events to find flood drivers in the Geul. We also explore flood drivers’ trends across various timescales and develop a new method to detect the main direction of a trend. Our results show that extreme 24 h precipitation alone is typically insufficient to cause floods. The combination of extreme rainfall and wet initial conditions determines the chance of flooding. Precipitation that leads to floods increases in winter, whereas no consistent trends are found in summer.
Jasper M. C. Denissen, Adriaan J. Teuling, Sujan Koirala, Markus Reichstein, Gianpaolo Balsamo, Martha M. Vogel, Xin Yu, and René Orth
Earth Syst. Dynam., 15, 717–734, https://doi.org/10.5194/esd-15-717-2024, https://doi.org/10.5194/esd-15-717-2024, 2024
Short summary
Short summary
Heat extremes have severe implications for human health and ecosystems. Heat extremes are mostly introduced by large-scale atmospheric circulation but can be modulated by vegetation. Vegetation with access to water uses solar energy to evaporate water into the atmosphere. Under dry conditions, water may not be available, suppressing evaporation and heating the atmosphere. Using climate projections, we show that regionally less water is available for vegetation, intensifying future heat extremes.
Luuk D. van der Valk, Miriam Coenders-Gerrits, Rolf W. Hut, Aart Overeem, Bas Walraven, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 2811–2832, https://doi.org/10.5194/amt-17-2811-2024, https://doi.org/10.5194/amt-17-2811-2024, 2024
Short summary
Short summary
Microwave links, often part of mobile phone networks, can be used to measure rainfall along the link path by determining the signal loss caused by rainfall. We use high-frequency data of multiple microwave links to recreate commonly used sampling strategies. For time intervals up to 1 min, the influence of sampling strategies on estimated rainfall intensities is relatively little, while for intervals longer than 5–15 min, the sampling strategy can have significant influences on the estimates.
Louise J. Schreyers, Tim H. M. van Emmerik, Thanh-Khiet L. Bui, Khoa L. van Thi, Bart Vermeulen, Hong-Q. Nguyen, Nicholas Wallerstein, Remko Uijlenhoet, and Martine van der Ploeg
Hydrol. Earth Syst. Sci., 28, 589–610, https://doi.org/10.5194/hess-28-589-2024, https://doi.org/10.5194/hess-28-589-2024, 2024
Short summary
Short summary
River plastic emissions into the ocean are of global concern, but the transfer dynamics between fresh water and the marine environment remain poorly understood. We developed a simple Eulerian approach to estimate the net and total plastic transport in tidal rivers. Applied to the Saigon River, Vietnam, we found that net plastic transport amounted to less than one-third of total transport, highlighting the need to better integrate tidal dynamics in plastic transport and emission models.
Linda Bogerd, Hidde Leijnse, Aart Overeem, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 247–259, https://doi.org/10.5194/amt-17-247-2024, https://doi.org/10.5194/amt-17-247-2024, 2024
Short summary
Short summary
Algorithms merge satellite radiometer data from various frequency channels, each tied to a different footprint size. We studied the uncertainty associated with sampling (over the Netherlands using 4 years of data) as precipitation is highly variable in space and time by simulating ground-based data as satellite footprints. Though sampling affects precipitation estimates, it doesn’t explain all discrepancies. Overall, uncertainties in the algorithm seem more influential than how data is sampled.
Bich Ngoc Tran, Johannes van der Kwast, Solomon Seyoum, Remko Uijlenhoet, Graham Jewitt, and Marloes Mul
Hydrol. Earth Syst. Sci., 27, 4505–4528, https://doi.org/10.5194/hess-27-4505-2023, https://doi.org/10.5194/hess-27-4505-2023, 2023
Short summary
Short summary
Satellite data are increasingly used to estimate evapotranspiration (ET) or the amount of water moving from plants, soils, and water bodies into the atmosphere over large areas. Uncertainties from various sources affect the accuracy of these calculations. This study reviews the methods to assess the uncertainties of such ET estimations. It provides specific recommendations for a comprehensive assessment that assists in the potential uses of these data for research, monitoring, and management.
Awad M. Ali, Lieke A. Melsen, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 27, 4057–4086, https://doi.org/10.5194/hess-27-4057-2023, https://doi.org/10.5194/hess-27-4057-2023, 2023
Short summary
Short summary
Using a new approach based on a combination of modeling and Earth observation, useful information about the filling of the Grand Ethiopian Renaissance Dam can be obtained with limited data and proper rainfall selection. While the monthly streamflow into Sudan has decreased significantly (1.2 × 109–5 × 109 m3) with respect to the non-dam scenario, the negative impact has been masked due to higher-than-average rainfall. We reveal that the dam will need 3–5 more years to complete filling.
Marleen R. Lam, Alessia Matanó, Anne F. Van Loon, Rhoda A. Odongo, Aklilu D. Teklesadik, Charles N. Wamucii, Marc J. C. van den Homberg, Shamton Waruru, and Adriaan J. Teuling
Nat. Hazards Earth Syst. Sci., 23, 2915–2936, https://doi.org/10.5194/nhess-23-2915-2023, https://doi.org/10.5194/nhess-23-2915-2023, 2023
Short summary
Short summary
There is still no full understanding of the relation between drought impacts and drought indices in the Horn of Africa where water scarcity and arid regions are also present. This study assesses their relation in Kenya. A random forest model reveals that each region, aggregated by aridity, has its own set of predictors for every impact category. Water scarcity was not found to be related to aridity. Understanding these relations contributes to the development of drought early warning systems.
Adrià Fontrodona-Bach, Bettina Schaefli, Ross Woods, Adriaan J. Teuling, and Joshua R. Larsen
Earth Syst. Sci. Data, 15, 2577–2599, https://doi.org/10.5194/essd-15-2577-2023, https://doi.org/10.5194/essd-15-2577-2023, 2023
Short summary
Short summary
We provide a dataset of snow water equivalent, the depth of liquid water that results from melting a given depth of snow. The dataset contains 11 071 sites over the Northern Hemisphere, spans the period 1950–2022, and is based on daily observations of snow depth on the ground and a model. The dataset fills a lack of accessible historical ground snow data, and it can be used for a variety of applications such as the impact of climate change on global and regional snow and water resources.
Luuk D. van der Valk, Adriaan J. Teuling, Luc Girod, Norbert Pirk, Robin Stoffer, and Chiel C. van Heerwaarden
The Cryosphere, 16, 4319–4341, https://doi.org/10.5194/tc-16-4319-2022, https://doi.org/10.5194/tc-16-4319-2022, 2022
Short summary
Short summary
Most large-scale hydrological and climate models struggle to capture the spatially highly variable wind-driven melt of patchy snow cover. In the field, we find that 60 %–80 % of the total melt is wind driven at the upwind edge of a snow patch, while it does not contribute at the downwind edge. Our idealized simulations show that the variation is due to a patch-size-independent air-temperature reduction over snow patches and also allow us to study the role of wind-driven snowmelt on larger scales.
Alessandro Montemagno, Christophe Hissler, Victor Bense, Adriaan J. Teuling, Johanna Ziebel, and Laurent Pfister
Biogeosciences, 19, 3111–3129, https://doi.org/10.5194/bg-19-3111-2022, https://doi.org/10.5194/bg-19-3111-2022, 2022
Short summary
Short summary
We investigated the biogeochemical processes that dominate the release and retention of elements (nutrients and potentially toxic elements) during litter degradation. Our results show that toxic elements are retained in the litter, while nutrients are released in solution during the first stages of degradation. This seems linked to the capability of trees to distribute the elements between degradation-resistant and non-degradation-resistant compounds of leaves according to their chemical nature.
Linqi Zhang, Yi Liu, Liliang Ren, Adriaan J. Teuling, Ye Zhu, Linyong Wei, Linyan Zhang, Shanhu Jiang, Xiaoli Yang, Xiuqin Fang, and Hang Yin
Hydrol. Earth Syst. Sci., 26, 3241–3261, https://doi.org/10.5194/hess-26-3241-2022, https://doi.org/10.5194/hess-26-3241-2022, 2022
Short summary
Short summary
In this study, three machine learning methods displayed a good detection capacity of flash droughts. The RF model was recommended to estimate the depletion rate of soil moisture and simulate flash drought by considering the multiple meteorological variable anomalies in the adjacent time to drought onset. The anomalies of precipitation and potential evapotranspiration exhibited a stronger synergistic but asymmetrical effect on flash droughts compared to slowly developing droughts.
Femke A. Jansen, Remko Uijlenhoet, Cor M. J. Jacobs, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 26, 2875–2898, https://doi.org/10.5194/hess-26-2875-2022, https://doi.org/10.5194/hess-26-2875-2022, 2022
Short summary
Short summary
We studied the controls on open water evaporation with a focus on Lake IJssel, the Netherlands, by analysing eddy covariance observations over two summer periods at two locations at the borders of the lake. Wind speed and the vertical vapour pressure gradient can explain most of the variation in observed evaporation, which is in agreement with Dalton's model. We argue that the distinct characteristics of inland waterbodies need to be taken into account when parameterizing their evaporation.
Wagner Wolff, Aart Overeem, Hidde Leijnse, and Remko Uijlenhoet
Atmos. Meas. Tech., 15, 485–502, https://doi.org/10.5194/amt-15-485-2022, https://doi.org/10.5194/amt-15-485-2022, 2022
Short summary
Short summary
The existing infrastructure for cellular communication is promising for ground-based rainfall remote sensing. Rain-induced signal attenuation is used in dedicated algorithms for retrieving rainfall depth along commercial microwave links (CMLs) between cell phone towers. This processing is a source of many uncertainties about input data, algorithm structures, parameters, CML network, and local climate. Application of a stochastic optimization method leads to improved CML rainfall estimates.
Charles Nduhiu Wamucii, Pieter R. van Oel, Arend Ligtenberg, John Mwangi Gathenya, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 25, 5641–5665, https://doi.org/10.5194/hess-25-5641-2021, https://doi.org/10.5194/hess-25-5641-2021, 2021
Short summary
Short summary
East African water towers (WTs) are under pressure from human influences within and without, but the water yield (WY) is more sensitive to climate changes from within. Land use changes have greater impacts on WY in the surrounding lowlands. The WTs have seen a strong shift towards wetter conditions while, at the same time, the potential evapotranspiration is gradually increasing. The WTs were identified as non-resilient, and future WY may experience more extreme variations.
Peter T. La Follette, Adriaan J. Teuling, Nans Addor, Martyn Clark, Koen Jansen, and Lieke A. Melsen
Hydrol. Earth Syst. Sci., 25, 5425–5446, https://doi.org/10.5194/hess-25-5425-2021, https://doi.org/10.5194/hess-25-5425-2021, 2021
Short summary
Short summary
Hydrological models are useful tools that allow us to predict distributions and movement of water. A variety of numerical methods are used by these models. We demonstrate which numerical methods yield large errors when subject to extreme precipitation. As the climate is changing such that extreme precipitation is more common, we find that some numerical methods are better suited for use in hydrological models. Also, we find that many current hydrological models use relatively inaccurate methods.
Ruben Imhoff, Claudia Brauer, Klaas-Jan van Heeringen, Hidde Leijnse, Aart Overeem, Albrecht Weerts, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 25, 4061–4080, https://doi.org/10.5194/hess-25-4061-2021, https://doi.org/10.5194/hess-25-4061-2021, 2021
Short summary
Short summary
Significant biases in real-time radar rainfall products limit the use for hydrometeorological forecasting. We introduce CARROTS (Climatology-based Adjustments for Radar Rainfall in an OperaTional Setting), a set of fixed bias reduction factors to correct radar rainfall products and to benchmark other correction algorithms. When tested for 12 Dutch basins, estimated rainfall and simulated discharges with CARROTS generally outperform those using the operational mean field bias adjustments.
Simone Gelsinari, Valentijn R. N. Pauwels, Edoardo Daly, Jos van Dam, Remko Uijlenhoet, Nicholas Fewster-Young, and Rebecca Doble
Hydrol. Earth Syst. Sci., 25, 2261–2277, https://doi.org/10.5194/hess-25-2261-2021, https://doi.org/10.5194/hess-25-2261-2021, 2021
Short summary
Short summary
Estimates of recharge to groundwater are often driven by biophysical processes occurring in the soil column and, particularly in remote areas, are also always affected by uncertainty. Using data assimilation techniques to merge remotely sensed observations with outputs of numerical models is one way to reduce this uncertainty. Here, we show the benefits of using such a technique with satellite evapotranspiration rates and coupled hydrogeological models applied to a semi-arid site in Australia.
Joost Buitink, Lieke A. Melsen, and Adriaan J. Teuling
Earth Syst. Dynam., 12, 387–400, https://doi.org/10.5194/esd-12-387-2021, https://doi.org/10.5194/esd-12-387-2021, 2021
Short summary
Short summary
Higher temperatures influence both evaporation and snow processes. These two processes have a large effect on discharge but have distinct roles during different seasons. In this study, we study how higher temperatures affect the discharge via changed evaporation and snow dynamics. Higher temperatures lead to enhanced evaporation but increased melt from glaciers, overall lowering the discharge. During the snowmelt season, discharge was reduced further due to the earlier depletion of snow.
Theresa C. van Hateren, Marco Chini, Patrick Matgen, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-583, https://doi.org/10.5194/hess-2020-583, 2020
Manuscript not accepted for further review
Short summary
Short summary
Agricultural droughts occur when the water content of the soil diminishes to such a level that vegetation is negatively impacted. Here we show that, although they are classified as the same type of drought, substantial differences between soil moisture and vegetation droughts exist. This duality is not included in the term agricultural drought, and thus is a potential issue in drought research. We argue that a distinction should be made between soil moisture and vegetation drought events.
Joost Buitink, Anne M. Swank, Martine van der Ploeg, Naomi E. Smith, Harm-Jan F. Benninga, Frank van der Bolt, Coleen D. U. Carranza, Gerbrand Koren, Rogier van der Velde, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 24, 6021–6031, https://doi.org/10.5194/hess-24-6021-2020, https://doi.org/10.5194/hess-24-6021-2020, 2020
Short summary
Short summary
The amount of water stored in the soil is critical for the productivity of plants. Plant productivity is either limited by the available water or by the available energy. In this study, we infer this transition point by comparing local observations of water stored in the soil with satellite observations of vegetation productivity. We show that the transition point is not constant with soil depth, indicating that plants use water from deeper layers when the soil gets drier.
Joost Buitink, Lieke A. Melsen, James W. Kirchner, and Adriaan J. Teuling
Geosci. Model Dev., 13, 6093–6110, https://doi.org/10.5194/gmd-13-6093-2020, https://doi.org/10.5194/gmd-13-6093-2020, 2020
Short summary
Short summary
This paper presents a new distributed hydrological model: the distributed simple dynamical systems (dS2) model. The model is built with a focus on computational efficiency and is therefore able to simulate basins at high spatial and temporal resolution at a low computational cost. Despite the simplicity of the model concept, it is able to correctly simulate discharge in both small and mesoscale basins.
Jasper Foets, Carlos E. Wetzel, Núria Martínez-Carreras, Adriaan J. Teuling, Jean-François Iffly, and Laurent Pfister
Hydrol. Earth Syst. Sci., 24, 4709–4725, https://doi.org/10.5194/hess-24-4709-2020, https://doi.org/10.5194/hess-24-4709-2020, 2020
Short summary
Short summary
Diatoms (microscopic algae) are regarded as useful tracers in catchment hydrology. However, diatom analysis is labour-intensive; therefore, only a limited number of samples can be analysed. To reduce this number, we explored the potential for a time-integrated mass-flux sampler to provide a representative sample of the diatom assemblage for a whole storm run-off event. Our results indicate that the Phillips sampler did indeed sample representative communities during two of the three events.
Caspar T. J. Roebroek, Lieke A. Melsen, Anne J. Hoek van Dijke, Ying Fan, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 24, 4625–4639, https://doi.org/10.5194/hess-24-4625-2020, https://doi.org/10.5194/hess-24-4625-2020, 2020
Short summary
Short summary
Vegetation is a principal component in the Earth system models that are used for weather, climate and other environmental predictions. Water is one of the main drivers of vegetation; however, the global distribution of how water influences vegetation is not well understood. This study looks at spatial patterns of photosynthesis and water sources (rain and groundwater) to obtain a first understanding of water access and limitations for the growth of global forests (proxy for natural vegetation).
Anne J. Hoek van Dijke, Kaniska Mallick, Martin Schlerf, Miriam Machwitz, Martin Herold, and Adriaan J. Teuling
Biogeosciences, 17, 4443–4457, https://doi.org/10.5194/bg-17-4443-2020, https://doi.org/10.5194/bg-17-4443-2020, 2020
Short summary
Short summary
We investigated the link between the vegetation leaf area index (LAI) and the land–atmosphere exchange of water, energy, and carbon fluxes. We show that the correlation between the LAI and water and energy fluxes depends on the vegetation type and aridity. For carbon fluxes, however, the correlation with the LAI was strong and independent of vegetation and aridity. This study provides insight into when the vegetation LAI can be used to model or extrapolate land–atmosphere fluxes.
Cited articles
Alegre, H., Baptiste, J. M., Cabrera Jr., E., Cubillo, F., Duarte, P.,
Hirner, W., Merkel, W., and Pareno, R.: Performance Indicators for Water
Supply Services, in: Manual of Best Practice, IWA Publishing, London, UK, 2006.
Baggelaar, P. K. and Geudens, P. J. J. G.: Prognoses en scenario's
drinkwatergebruik in Nederland (Prognoses and scenarios for drinking water
use in the Netherlands), ICASTAT, VEWIN, The Hague, the Netherlands,
2017.
Bauer, J. M. and Herder, P. M.: Designing Socio-Technical Systems. Philosophy
of Technology and Engineering Sciences, North-Holland, Amsterdam, the Netherlands, 2009.
Binder, C. R., Hinkel, J., Bots, P. W. G., and Pahl-Wostl, C.: Comparison of
frameworks for analyzing social-ecological systems, Ecol. Soc., 18, 26–45, 2013.
Carr, E. R., Wingard, P. M., Yorty, S. C., Thompson, M. C., Jensen, N. K., and Roberson, J.: Applying DPSIR to sustainable development, Int. J
Sust. Dev. World, 14, 543–555, 2009.
Cohen, D. A.: The Rationed City: The Politics of Water, Housing, and Land
Use in Drought-Parched S ao Paulo, Public Culture, 28, 261–289, 2016.
Dutch Government: Drinkwaterwet (Dutch Drinking water Decree), BWBR0026338, The Hague, the Netherlands, 2009a.
Dutch Government: Waterwet (Dutch Decree on Water), BWBR0025458, The Hague, the Netherlands, 2009b.
Ekins, P., Gupta, J., and Boileau, P.: Global Environment Outlook GEO-6:
Healthy Planet, Healthy People. Global Environment Outlook, United Nations Environment Programme, Cambridge, UK, 2019.
European Benchmarking Co-operation: Learning from international best
practices; 2017 Water and Wastewater Benchmark, EBC, The Hague, the Netherlands, 2017.
European Environment Agency: European waters Assessment of status and
pressures 2018, Luxembourg, 2018.
European Union: EU Water Framework Directive, in: Official
Journal of the European Communities, edited by: EUROPEAN UNION, Brussels, Belgium, 2000.
Eurostat: Environmental indicators: Typology and overview, Technical Report N0. 25,
European Environment Agency, Copenhagen, Denmark, 1999.
Gleeson, T. and Wada, Y.: Assessing regional groundwater stress for nations
using multiple data sources with the groundwater footprint, Environ. Res. Lett., 8, 044010, https://doi.org/10.1088/1748-9326/8/4/044010,
2013.
Hashimoto, T., Stedinger, J. R., and Loucks, D. P.: Reliability, Resiliency,
and Vulnerability Criteria For Water Resource System Performance Evaluation, Water Resour. Res., 18, 14–20, 1982.
Hellegers, P. and Leflaive, X.: Water allocation reform: what makes it so
difficult?, Water Int., 40, 273–285, 2015.
Janza, M.: A decision support system for emergency response to groundwater
resource pollution in an urban area (Ljubljana, Slovenia), Environ. Earth Sci., 73, 3763–3774,
2015.
Jorgensen, L. F. and Stockmarr, J.: Groundwater monitoring in Denmark:
Characteristics, perspectives and comparison with other countries, Hydrogeol. J., 17, 827–842, 2009.
Kools, S., Van Loon, A., Sjerps, R., and Rosenthal, L.: The quality of
drinking water resources in the Netherlands, edited by: KWR, KWR Report, KWR, Nieuwegein, the Netherlands, 2019.
Liu, J., Mooney, H., Hull, V., Davis, S. J., Gaskell, J., Hertel, T.,
Lubchenco, J., Seto, K. C., Gleick, P., Kremen, C., and Li, S.:
Sustainability. Systems integration for global sustainability, Science, 347,
1258832, https://doi.org/10.1126/science.1258832, 2015.
Loucks, D. P.: Sustainable Water Resources Management, Water Int., 25, 3–10, 2000.
Loucks, D. P., Van Beek, E., Stedinger, J. R., Dijkman, J. P., and
Villars, M. T.: Water resource systems planning and management: an
introduction to Methods, Models and Applications, Springer, Deltares and
UNESCO-IHE, Cham, Switzerland, 2017.
Melese, Y. G., Heijnen, P. W., Stikkelman, R. M., and Herder, P. M.:
Exploring for real options during CCS networks conceptual design to mitigate
effects of path-dependency and lock-in, Int. J. Greenh. Gas Con., 42, 16–25, 2015.
Mendizabal, I., Baggelaar, P. K., and Stuyfzand, P. J.: Hydrochemical trends
for public supply well fields in the Netherlands (1898–2008), natural
backgrounds and upscaling to groundwater bodies, J. Hydrol., 450–451, 279–292, 2012.
Ministry of Infrastructure and Environment and Ministry of Economic Affairs
and Climate Policy: Nederland beter weerbaar tegen droogte; Eindrapportage
Beleidstafel Droogte (the Netherlands more resilient to drought; final report policy table drought), The Hague, the Netherlands, 2019.
Napoli, C. and Garcia-Tellez, B.: A framework for understanding energy for
water, Int. J. Water Resour. D, 32, 339–361, 2016.
Ness, B., Urbel-Piirsalu, E., Anderberg, S., and Olsson, L.: Categorising
tools for sustainability assessment, Ecol. Econ., 60, 498–508, 2007.
Pahl-Wostl, C.: Towards sustainability in the water sector – The importance
of human actors and processes of social learning, Aquat. Sci., 64, 394–411, 2002.
Pahl-Wostl, C.: Water Governance in the Face of Global Change; From understanding to transformation, Springer, London, UK, 2015.
Pant, L. P., Adhikari, B., and Bhattarai, K. K.: Adaptive transition for
transformations to sustainability in developing countries, Curr. Opin. Env. Sust., 14, 206–212,
2015.
Singh, R. K., Murty, H. R., Gupta, S. K., and Dikshit, A. K.: An overview of
sustainability assessment methodologies, Ecol. Indic., 15, 281–299, 2012.
Smith, A. and Stirling, A.: The Politics of Social-ecological Resilience
and Sustainable Socio-technical Transitions, Ecol. Soc., 15, 11, available at: https://www.researchgate.net/publication/45227241_The_Politics_of_Social-ecological_Resilience_and_Sustainable_Socio-technical_Transitions (last access: 18 January 2021), 2010.
Sorensen, P.: The chronic water shortage in Cape Town and survival
strategies, Int. J. Environ. Stud., 74, 515–527, 2017.
Teuling, A. J.: A hot future for European droughts, Nat. Clim. Change, 8, 364–365, 2018.
UN: Indicators of Sustainable Development: Guidelines and Methodologies,
Economic and Social Affairs, United Nations, New York, USA, 2007.
UN: Transforming our world: The 2030 Agenda for Sustainable Development,
United Nations, New York, USA, 2015.
UN: Sustainable Development Goal 6 Synthesis Report 2018 on Water and
Sanitation, edited by: Water, U., United Nations, New York, USA, 2018.
UNESCAP: Economic and social survey of Asia and the Pacific 2009; Addressing
triple threats to development, edited by: United Nations Economic and Social
Commission for Asia and the Pacific, ST/ESCAP/2522, United Nations
Economic and Social Commission for Asia and the Pacific, Bangkok,
Thailand, 2009.
UNICEF and WHO: Progress on Sanitation and Drinking Water; 2015 Update and
MDG Assessment, NLM classification: WA 670, UNICEF and World Health
Organization, New York, USA, 2015.
Van den Brink, C. and Wuijts, S.: Towards an effective protection of
groundwater resources: putting policy into practice with the drinking water
protection file, Water Policy, 18, 635–653, 2016.
Van der Aa, N. G. F. M., Tangena, B. H., Wuijts, S., and De Nijs, A. C. M.:
Scenario's drinkwatervraag 2015–2040 en beschikbaarheid bronnen; verkenning
grondwatervoorraden voor drinkwater (Scenarios drinking water demand
2015–2040 and water resources availability; exploratory study on groundwater
resources for drinking water), RIVM, Bilthoven, the Netherlands, 2015.
Van der Kerk, G. and Manuel, A.: A comprehensive index for a sustainable
society: The SSI – the Sustainable Society Index, Ecol. Econ., 66, 228–242, 2008.
Van Engelenburg, J., Hueting, R., Rijpkema, S., Teuling, A. J., Uijlenhoet, R., and Ludwig, F.: Impact of Changes in Groundwater Extractions and Climate
Change on Groundwater-Dependent Ecosystems in a Complex Hydrogeological
Setting, Water Resour. Manag., 32, 259–272, 2018.
Van Engelenburg, J., Van Slobbe, E., and Hellegers, P.: Towards sustainable
drinking water abstraction: an integrated sustainability assessment
framework to support local adaptation planning, J. Integr. Environ. Sci., 16, 89–122, 2019.
Van Engelenburg, J., De Jonge, M., Rijpkema, S., Van Slobbe, E., and Bense, V. F.: Hydrogeological evaluation of managed aquifer recharge in a glacial
moraine complex using long-term groundwater data analysis,
Hydrogeol. J., 28, 1787–1807, 2020.
Van Noordwijk, M., Speelman, E., Hofstede, G. J., Farida, A., Abdurrahim, A. Y., Miccolis, A., Hakim, A. L., Wamucii, C. N., Lagneaux, E., Andreotti, F.,
Kimbowa, G., Assogba, G. G. C., Best, L., Tanika, L., Githinji, M., Rosero, P., Sari, R. R., Satnarain, U., Adiwibowo, S., Ligtenberg, A., Muthuri, C.,
Pena-Claros, M., Purwanto, E., Van Oel, P., Rozendaal, D., Suprayogo, D., and Teuling, A. J.: Sustainable Agroforestry Landscape Management: Changing
the Game, Land, 9, 243, https://doi.org/10.3390/land9080243, 2020.
Van Thiel, L.: Watergebruik thuis 2016 (Domestic water use 2016). TNO Nipo Report C8732; Kantar Public, Amsterdam, the Netherlands, 2017.
Vitens: Resiliently ahead; Long-term vision on our infrastructure 2016–2040,
Vitens, Zwolle, the Netherlands, 2016.
WHO: Guidelines for drinking-water quality: fourth edition incorporating the
first addendum, World Health Organization, Geneva, Switzerland, 2017.
WHO and UNICEF: Progress on drinking water, sanitation and hygiene, 2017
update and SDG Baselines, World Health Organization (WHO) and
UNICEF, Geneva, Switzerland, 2017.
Wolters, H. A., Van den Born, G. J., Dammers, E., and Reinhard, S.:
Deltascenario's voor de 21e eeuw, actualisering 2017 (Delta scenarios for
the 21st century, actualisation 2017), Deltares, Utrecht, the Netherlands, 2018.
Short summary
This study analysed the impact of extreme weather events, water quality deterioration, and a growing drinking water demand on the sustainability of drinking water supply in the Netherlands. The results of the case studies were compared to sustainability issues for drinking water supply that are experienced worldwide. This resulted in a set of sustainability characteristics describing drinking water supply on a local scale in terms of hydrological, technical, and socio-economic characteristics.
This study analysed the impact of extreme weather events, water quality deterioration, and a...