Cheng, G., Hao, T., Ke, H., Gong, F., Chen, J., and Shang, J.: Controlled growth of SnO
2 nanostructures with small diameters 5 and their photocatalytic properties, IET Micro. Nano. Lett., 8, 473–475, 2013.
Chong, M. N., Jin, B., Chow, C. W. K., and Saint, C. P.: A new approach to optimize an annular slurry reactor system for the degradation of Congo-red: Statistical analysis and modelling, Chem. Eng. J., 152, 158–166, 2009.
Chong, M. N., Jin, B., Chow, C. W. K., and Saint, C.: Recent developments in photocatalytic water treatment technology: A review, Water Res., 44, 2997–3027, 2010.
Dinesh, V. P., Biji, P., Ashok, A., Dhara, S. K., Kamruddin, M., Tyagi, A. K., and Raj, B.: Plasmon-mediated, highly enhanced photocatalytic degradation of industrial textile dyes using hybrid ZnO@Ag core–shell nanorods, RSC Adv., 4, 58930–58940, 2014.
Girish Kumar, S. and Koteswara Rao, K. S. R.: Zinc oxide based photocatalysis: tailoring surface bulk structure and related interfacial charge carrier dynamics for better environmental applications, RSC Adv., 5, 3306–3351, 2015.
Gupta, S. M. and Tripathi, M.: A review of TiO
2 nanoparticles, Chinese Sci. Bull., 56, 1639–1657, https://doi.org/10.1007/s11434-011-4476-1, 2011.
Han, J., Liu, Y., Singhal, N., Wang, L., and Gao, W.: Comparative photocatalytic degradation of estrone in water by ZnO and TiO
2 under artificial UV-A and solar irradiation, Chem. Eng. J., 213, 150–162, 2012.
Herrmann, J. M.: Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catal. Today, 53, 115–129, 1999.
Hou, H., Shang, M., Wang, L., Li, W., Tang, B., and Yang, W.: Efficient Photocatalytic Activities of TiO
2 Hollow Fibers with Mixed Phases and Mesoporous Walls, Sci. Rep., 5, 15228, https://doi.org/10.1038/srep15228, 2015.
Hu, A., Liang, R., Zhang, X., Kurdi, S., Luong, D., Huang, H., Peng, P., Marzbanrad, E., Oakes, K. D., Zhou, Y., and Servos, M. R.: Enhanced photocatalytic degradation of dyes by TiO
2nanobelts with hierarchical structures, J. Photoch. Photobio. A, 256, 7–15, 2013.
Jiji, A., Joseph, N., Donald, R. B., Daniel, M., Amit, S., and Qiang, Y.: Size-Dependent Specific Surface Area of Nanoporous Film Assembled by Core-Shell Iron Nanoclusters, J. Nanomater., 2006, 54961, https://doi.org/10.1155/JNM/2006/54961, 2006.
Jing, L. Q., Qu, Y., Wang, B., Li, S., Jiang, B., Yang, L., Wei, F., and Fu, H.: Review of photoluminescence performance of nan0-sized semiconductor materials and its relationship with photocatalytic activity, J. Sol. Energ. Mat. Sol. C., 90, 1773–1787, 2006.
Jo-Yong, P., Yun-Jo, L., Ki-Won, J., Jin-Ook B. G., and Dae, J. Y.: Chemical Synthesis and Characterization of Highly Oil Dispersed MgO Nanoparticles, J. Ind. Eng. Chem., 12, 882–887, 2006.
Keane, D. A., McGuigan, K. G., Ibáñez, P. F., Polo-López, M. I., Byrne, J. A., Dunlop, P. S. M., O'Shea, K., Dionysioufg, D. D., and Pillai, S. C.: Solar photocatalysis for water disinfection: materials and reactor design, Catal. Sci. Technol., 4, 1211–1226, 2014.
Konstantinou, I. K. and Albanis, T. A.: TiO
2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations. A review, Appl. Catal. B-Environ., 49, 1–14, 2004.
Kuriakose, S., Choudhary, V., Satpati, B., and Mohapatra, S.: Enhanced photocatalytic activity of Ag–ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method, Beilstein J. Nanotechnol., 5, 639–650, https://doi.org/10.3762/bjnano.5.75, 2014.
Li, K., Xiong, J., Chen, T., Yan, L., Dai, Y., Song, D., Lv, Y., and Zeng, Z.: Preparation of graphene/TiO
2 composites by non-ionic surfactant strategy and their simulated sunlight and visible light photocatalytic activity towards representative aqueous POPs degradation, J. Hazard. Mater., 250–251, 19–28, 2013.
Li, X. Z., Zhao, W., and Zhao, J. C.: Visible light-sensitized semiconductor photocatalytic degradation of 2,4-dichlorophenol, Sci. China Ser. B, 45, 421–425, 2002.
Li, Y., Qin, Z., Guo, H., Yang, H., Zhang, G., Ji, S., and Zeng, T.: Low-Temperature Synthesis of Anatase TiO
2 Nanoparticles with Tunable Surface Charges for Enhancing Photocatalytic Activity, PLoS ONE, 9, 114638, https://doi.org/10.1371/journal.pone.0114638, 2014.
Lin, C. and Lin, K.: Photocatalytic oxidation of toxic organohalides with TiO
2/UV: The effects of humic substances and organic mixtures, Chemosphere, 66, 1872–1877, 2007.
Lydakis-Simantiris, N., Riga, D., Katsivela, E., Mantzavinos, D., and Xekoukoulotakis, N. P.: Disinfection of spring water and secondary treated municipal wastewater by TiO
2 photocatalysis, Desalination, 250, 351–355, 2010.
Ma, S., Xue, J., Zhou, Y., and Zhang, Z.: Photochemical synthesis of ZnO/Ag
2O heterostructures with enhanced ultraviolet and visible photocatalytic activity, J. Mater. Chem. A, 2, 7272–7278, 2014.
Nagaraja, R., Kottam, N., Girija, C. R., and Nagabhushana, B. M.: Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route, Powder Technol., 215–216, 91–97, 2012.
Nguyen, C. C., Vu, N. N., and Do, T.: Recent advances in the development of sunlight driven hollow structure photocatalysts and their applications, J. Mater. Chem. A, 3, 18345–18359, 2015.
Pardeshi, S. K. and Patil, A. B.: A simple route for photocatalytic degradation of phenol in aqueous zinc oxide suspension using solar energy, Sol. Energy, 82, 700–705, 2008.
Parida, K. M. and Parija, S.: Photocatalytic degradation of phenol under solar radiation using microwave irradiated zinc oxide, Sol. Energy, 80, 1048–1054, 2006.
Patil, S. S., Mali, M. G., Tamboli, M. S., Patil, D. R., Kulkarni, M. V., Yoon, H., Kim, H., Al-Deyab, S. S., Yoon, S. S., Kolekar, S. S., and Kale, B. B.: Green approach for hierarchical nanostructured Ag-ZnO and theirphotocatalytic performance under sunlight, Catal. Today, 260, 126–134, 2016.
Qamar, M. and Muneer, M.: A comparative activity of titanium oxide and zinc oxide by investigating the degradation of vanillin, Desalination, 249, 535–540, 2009.
Qi, L., Yu, J., Liu, G., and Wong, P. K.: Synthesis and photocatalytic activity of plasmonicAg@AgCl composite immobilized on titanate nanowire films, Catal. Today, 224, 193–199, 2014.
Sakthivel, S., Neppolian, B., Shankar, B. V., Arabindoo, B., Palanichamy, M., and Murugesan, V.: Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO
2, Sol. Energ. Mat. Sol. C., 77, 65–82, 2003.
Shinde, D. R., Qureashi, I., Pawar, R. A., and Pawar, R. R.: Enhancement of photocatalytic activity of ZnO via Nd(III) doping towards the degradation of dyes under solar irradiation, J. Nanoeng. Nanomanufact., 5, 197–203, 2015.
Singh, N. K., Saha, S., and Pal, A.: Solar light-induced photocatalytic degradation of methyl red in an aqueous suspension of commercial ZnO: a green approach, Desalination Water Treat., 53, 501–514, 2015.
Sood, S., Mehta, S. K., Umar, A., and Kansal, S. K.: The visible light-driven photocatalytic degradation of Alizarin red S using 30 Bi-doped TiO
2 nanoparticles, New J. Chem., 38, 3127–3136, 2014.
Wang, C., Zhang, Y., Zhu, T., Wang, P., and Gao, S.: Photocatalytic degradation of methylene blue and methyl orange in a Zn(II)-based Metal–Organic Framework, Desalination Water Treat., 57, 17844–17851, 2016.
Xu, L., Wei, B., Liu, W., Zhang, H,, Su, C., and Che, J.: Flower-like ZnO-Ag
2O composites: precipitation synthesis and photocatalytic activity, Nano. Res. Lett., 8, 536–541, 2013.
Yang, S., Tian, H., Xiao, H., Shang, X., Gong, X., Yao, S., and Chen, K.: Photodegradation of cyanine and merocyanine dyes, Dyes Pigments, 49, 93–101, 2001.
Zhang, D. and Zeng, F.: Synthesis of an Ag–ZnO nanocomposite catalyst for visible light-assisted degradation of a textile dye 5 in aqueous solution, Res. Chem. Intermed., 36, 1055–1063, 2010.
Zhang, Y., Wu, L., Xie, E., Duan, H., Han, W., and Zhao, J.: A simple method to prepare uniform-size nanoparticle TiO
2 electrodes for dye-sensitized solar cells, J. Power Sources, 189, 1256–1263, 2009.
Zheng, Y. H., Chen, C. Q., Zhan, Y. Y., Lin, X. Y., Zheng, Q., Wei, K. M., and Zhu, J. F.: Photocatalytic activity of Ag/ZnO heterostructure nano-catalyst: Correlation between structure and property, J. Phys. Chem. C, 112, 10773–10777, 2008.
Zhi-gang, J., Kuan-kuan, P., Yan-hua, L., and Rong-sun, Z.: Preparation and photocatalytic performance of porous ZnO microrods loaded with Ag, T. Nonferr. Metal. Soc., 22, 873–878, 2012.
Zhou, W., Du, G., Hu, P., Li, G., Wang, D., Liu, H., Wang, J., Boughton, R., Liu, D., and Jiang, H.: Nanoheterostructures on TiO
2 nanobelts achieved by acid hydrothermal method with enhanced photocatalyic and gas sensitive performance, J. Mater. Chem., 21, 7937–7945, 2011.