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Abstract. By accurate predicting of pipe bursts, it is possible to schedule pipe maintenance, rehabilitation and improve 

level of services in water distribution networks (WDNs). In this study we aimed to implement five artificial intelligence and 

machine learning regression models such as multivariate adaptive regression splines (MARS), M5' regression tree (M5'), 

Least square support vector regression (LS-SVR), fuzzy regression based on c-means clustering (FCMR) and regressive 10 

convolution neural network with support vector regression (RCNN-SVR) for predicting pipe burst rate and evaluating the 

performance of these models. The most effective parameters for regression models are pipes age, diameter, depth of 

installation, length, average and maximum hydraulic pressure. In the present study, collected data include 158 cases for 

polyethylene (PE) and 124 cases for asbestos cement (AC) pipes during 2012-2019. The results indicate that RCNN-SVR 

model has a great performance of pipe burst rate (PBR) prediction. 15 

1. Introduction 

Water distribution networks (WDNs) are critical infrastructures. The objective of WDNs is to provide water with desirable 

quantity, quality and pressure for the consumers. However, in case of pipe failure which is the progressive effect of physical, 

operational and weather-related factors, might fail the WDN to achieve these goals (Kakoudakis, 2019). A pipe bursts when 

the residual strength of a deteriorated pipe can no longer resist the force inflicted on it (Berardi et al., 2008). Pipe burst 20 

prediction helps to prioritize the maintenance, repair, rehabilitation and replacement of pipes after assessing and forecasting 

pipe propensity to burst. In addition, pipe burst prediction can be used for budget allocation and cost analysis of dynamic or 

static designing of water distribution networks. In the literature, there are typically two categories consisting of physical and 

statistical methods for modeling of pipes burst (Grigg, 2007) (Rajani and Kleiner, 2001). Physical models are developed to 

understand the physical process of pipe deterioration. In this models, the items that may affect the pipes burst, include 25 

environmental conditions, quality of manufacturing, installation procedure, internal and external loads, surrounding soil, 

ground traffic and etc. (Wilson et al., 2015). The physical mechanisms of pipe burst are complex and not well-understood, 

and there is limited data available on the breakage failure modes due to the inspection difficulty and lack of historical data 
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(Rajani and Kleiner, 2001). Statistical methods, model the pipes burst based on historical data. The assumption of these 

models is that pipes with similar specification and working environment will experience similar deterioration pattern 30 

(Kleiner and Rajani, 2010). Since physical models developed for pipe failure prediction are complicated and expensive, they 

can be used on a limited number of pipes. But statistical models based on historical data are less expensive, and have vast 

applications. 

The goal of any data analysis is to extract accurate estimation from the raw information. One of the most substantial and 

typical issues is whether there is statistical relationship between a response variable (Y) and explanatory variables (Xi). One 35 

way to answer this issue is to employ regression analysis in order to model its relationship (Alexopoulos, 2010). Different 

studies have been proposed various pipe failure prediction methods such as physical (Randall-Smith et al., 1992), 

multivariate adaptive regression spline (Kutylowska, 2019), artificial neural networks (Achim et al., 2007) (Kutylowska, 

2017), support vector machines (Kutylowska, 2018), fuzzy logic (Rajani and Tesfamariam, 2007), neuro-fuzzy systems 

(Christodoulou et al., 2004) (Tabesh et al., 2009) and evolutionary polynomial regression (Berardi et al., 2008). 40 

In this research, pipe length (L), diameter (Dim), average hydraulic pressure (Pa), maximum hydraulic pressure (Pm), age 

(A) and installation depth (ID) are used as input of regression models and pipe burst rate (PBR) obtained as the output. In 

addition, correlation between these factors and PBR have been investigated. After implementing the various artificial 

intelligence and machine learning models such as multivariate adaptive regression splines (MARS), M5' regression tree 

(M5'), Least square support vector regression (LS-SVR), fuzzy regression based on c-means clustering (FCMR) and 45 

regressive convolution neural network with support vector regression model (RCNN-SVR) in a real water distribution 

network, the corresponding predicted PBR values have been evaluated to find the best model-based prediction method. 

2. Methodology 

In order to implement the regression models, six different input variables consist of pipe diameter, length, age, depth of 

installation, average and maximum hydraulic pressure have been used. The output of all mentioned prediction models is 50 

PBR. PBR values are calculated using the following equation: 

PBR=
number of annual pipe bursts

pipe length (km)
 

(1) 

The collected data have been split into training and test sets by random sampling. 85% of data have been selected for training 

and the rest of them have been used to test the models. By using several evaluation indices, the testing dataset evaluate the 

performance of the models on future unseen data. Further analysis will be performed to investigate the Pearson correlation of 

the PBR and the variables. 55 
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2.1. Description of regression models 

Regression analysis is a form of predictive modelling technique which investigates the relationship between a dependent 

(target) variable and independent variable(s) (predictor). In this section five multivariate regression models for pipe failure 

prediction will be implemented and discussed.  

2.1.1. Multivariate adaptive regression spline (MARS) 60 

Multivariate Adaptive Regression Splines (MARS) is a multi-variable non-parametric regression analysis for fitting the 

relationship between a set of input variables and dependent variables introduced by Friedman (1991). Recently the MARS as 

a powerful regression technique has been used for modeling of different types of data (Rezaie-balf, 2019) (Heddam and Kisi, 

2018) (Safari, 2019) (Emamgolizadeh et al., 2015) (Forghani and Peralta, 2017). In this method the training data sets are 

partitioned into separate regions, and each one gets its own regression line called basis functions. The break values between 65 

the intervals are called knots. Through modelling procedure, forward and backward stages are accomplished. Each stage has 

certain responsibilities, where important and appropriate variables are designated in the forward stage, while, in backward 

stage less important variables are eliminated to enhance the model performance (Friedman, 1991) (Sharda et al., 2008). The 

general MARS model equation is defined as: 

Y=β0+∑ βm.hm(X)  

M

m=1

 
(2) 

Where 70 

  hm(X)=∏[Sk,m(XV(k,m)-tk,m)]+

Km

k=1

 
(3) 

Where β
0
 and β

m
 are the parameter values and their functions are similar to the regression coefficient of the linear regression 

model; the hm(X) is the spline basis function that represents the data in each sub-region; M is the number of sub-regions or 

the number of  basis functions (BFs) in the model, which adjusted at the first step; “+” means the argument that is a truncated 

power function, Km is the knot quantity; Sk,mis +1 or -1 which shows the BF's direction; V(k,m) is the variable label and 

tk,m is the cut-off point. 75 

The BFs represent the relationship between the knots using the reflected pairs of hockey stick function (f) as follows: 

f(xi)=max  (0,x-c) 
(4) 

Or 

https://doi.org/10.5194/dwes-2021-7 Drinking Water 
Engineering and Science 

DiscussionsO
pe

n 
A
cc

es
s

Preprint. Discussion started: 29 March 2021
c© Author(s) 2021. CC BY 4.0 License.



4 

 

f(xi)=max  (0,c-x) 
(5) 

Here, c is a threshold value that denotes the knot, where the behavior of the function changes. This model searches over the 

space of all inputs and predictor values (knots) as well as the interactions between variables. During this search, an 

increasingly larger number of basis functions are added to the model to minimize a lack-of-fit criterion. As a result of these 80 

operations, MARS automatically determines the most important independent variables as well as the most significant 

interactions among them. It is noted that the search for the best predictor and knot location is performed in an iterative 

process. The predictors as well as the knot location, having the most contribution to the model, are selected first. Also, at the 

end of each iteration, the introduction of an interaction is checked for possible model improvements. 

The obtained BFs for Joopar WDN for AC and PE pipes are: 85 

AC pipes: 

BF1 = max (0, A -Pm) 

BF2 = max (0,162.93 -L) × max (0, Pm -70.2) 

BF3 = max (0,162.93 -L) × max (0,70.2 -Pm)   

BF4 = max (0, Pa -63.4) 

BF5 = max (0,63.4 -Pa) 

BF6 = max (0,49.9 -Pa) 

BF7 = max (0,46 -A) × max (0,99.39 -L) 

                    (6) 

PBR = 1.323 +0.347×BF1 +0.001×BF2 +0.0002×BF3 -0.057×BF4 -0.0371×BF5 +0.035×BF6 

+0.006×BF7 

                    (7) 

 

PE pipes: 

BF1 = max (0, L -112.05) 

BF2 = max (0,112.05 -L) 

BF3 = max (0,0.9 -ID) × max (0,71.3 -Pa) × max (0, L -116.74( 

BF4 = max (0,0.9 -ID) × max (0,71.3 -Pa) × max (0,116.74 -L( 

BF5 = BF4 × max (0, Dim -58( 

BF6 = BF4 × max (0,58 -Dim( 

                    (8) 

PBR = 1.338 -0.004×BF1 +0.0135×BF2 +0.006×BF3 +0.044×BF4 -0.0008×BF5 -0.001×BF6                     (9) 

2.1.2. M5' model tree (M5') 

M5 tree is a decision tree learner for regression problems introduced by Quinlan (1992). The M5 tree has three main types of 

nodes; decision nodes, leaf nodes and a root node.  A decision node has two or more branches, each representing values for 

the attributes. Leaf node represents a decision on the numerical target, and the topmost decision node in a tree is called root 

node. The model is established according to a binary decision tree in which there are linear regression functions in the leaf 90 

nodes, which sets a relationship between independent and dependent variables (Rahimikhoob et al., 2013). Wang and Witten 
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(1997) expanded the algorithm and introduced a new method called the M5' algorithm, which is structured by trees that 

graphically represent if-then rules. This algorithm is built top-down from a root node and involves partitioning the input 

space into many sub-spaces and fitting a linear regression model in each of the subspaces with similar values by calculating 

standard deviation. 95 

The M5' method builds a tree in three phases; growing phase, pruning phase and smoothing phase. In growing phase, the 

dataset is split on different attributes. Then the standard deviation for each branch is calculated. The resulting standard 

deviation is subtracted from the standard deviation before the split. The result is the standard deviation reduction (SDR) 

which is based on the decrease in standard deviation after a dataset is split on an attribute. Constructing a decision tree is all 

about finding attribute that returns the highest standard deviation reduction. SDR is represented by Quinlan (1992): 100 

SDR=sd(K)-∑
|Ki|

|K|
sd(Ki) 

(10) 

Where, K represents a set of examples that reaches the node; Ki and sd represent the subset of examples that has the i'th 

outcome of the potential set and the standard deviation respectively (Wang et al., 2010). 

At the end of the first phase, there is a large tree that over fits the data, so a pruning phase must be employed. In this phase, 

the tree is pruned back from each leaf until an estimate of the expected error that will be experienced at each node cannot be 

reduced any further (Wang et al., 2010). Finally, the smoothing phase is performed to compensate for the sharp 105 

discontinuities that will inevitably occur between adjacent linear models at the leaves of the pruned trees, particularly for 

some models constructed from a smaller number of training examples (Ditthakit et al., 2012). In this phase, the adjacent 

linear equations are updated in such a way that the predicted outputs for the neighboring input vectors corresponding to the 

different equations are becoming close in value. This process substantially increases the accuracy of prediction (Witten and 

Frank, 2005). 110 

M5' model tree implemented in our case study results as: 

AC pipes model: 

M1 = 3.66 -0.0267×L, M2 = 2.7 -0.0145×L, M3 = 2.12 -0.00895×L, M4 = 0.875, M5 = 1.13, M6 = 

1.77, M7 = 0.759, M8 = 1.18, M9 = 0.615, M10 = 0.999, M11 = 1.58, M12 = 0.588, M13 = 0.515, M14 

= -9.02 -0.00418×L +0.248×A 

PE pipes model: 

M1 = 3.69 -0.0228×L, M2 = 3.87 -0.03×L, M3 = 3.17 -0.0201×L, M4 = 1.34, M5 = 2.66, M6 = 1.65, 

M7 = 1.92, M8 = 2.66, M9 = 1.36, M10 = 2.4 -0.0115×L, M11 = 2.16 -0.00934×L, M12 = 1.9, M13 = 

1.17, M14 = 0.821, M15 = 1.15, M16 = 0.984 -0.00185×L, M17 = 1.97, M18 = 1.18, M19 = 0.432, 

M20 = 1.02 
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                  (a)                                                                             (b) 

           Figure 1. M5' tree graphical model for (a) AC pipes and (b) PE pipes 

2.1.3. Fuzzy c-regression (FCR): 

Fuzzy c–regression (FCR) model introduced by Hathaway and Bezdek (1993). This method is an extension of fuzzy c-means 

approach which is one of the most popular clustering method. It performs classification based on the iterative minimization 

of the following objective function and constraints (Bezdek et al. 1984; Bezdek 1981;  Dave 1992): 115 

Jq(μ,V,X)=∑∑(μi,j)
qDi,j

2

n

j=1

c

i=1

 
(11) 

Subject to: 

0≤μi,j≤1   

∑ μi,j=1

c

i=1

 

0<∑ μi,j<n

n

j=1

 

(12) 
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Where i∈{1,…,c} , j∈{1,…,n} , n is number of data points, c is number of clusters, μ is the fuzzy membership matrix, q is the 

fuzzifier where q≥0 , V is cluster center vector. X is a data vector and Di,j is the distance between observation xj and cluster 

center vi. By using a Lagrangian multiplier, V and μ can be obtained by optimizing the objective function in (1): 

μi,j=
1

∑ (
Di,j
Dk,j

)
2
q-1c

k=1

 (13) 

vi=
∑ [(μi,j)

qxj]
n
j=1

∑ (μi,j)
qn

j=1

 
(14) 

The membership values are initialized randomly and both these and the cluster centers are iteratively updated until the 120 

maximum change in μ
i,j

 becomes less than or equal to a specified threshold ε. q is normally set to 2 as this is the best value 

for the fuzzifier while the membership μ
i,j

 is randomly initialized. The cluster center vi and membership values μ
i,j

 are then 

iteratively updated using (32) and (33) respectively until either the maximum number of iterations or threshold ε is reached 

(Ameer et all, 2008). Finally the weighted least square is used for regression model, in which weights are membership values 

of train data and for each cluster, regression coefficients (β) is calculated: 125 

βi=(X
TWiX)

-1.XTWiY 
(15) 

Where Y is observed PBR, X is dependent variables and Wi=diag{μ
i
} for all train observations. Then by using calculated vi 

the membership values of test data are used for prediction: 

ypre(j)=∑ μi,j

c

i=1

.xtest(j).βi 
(16) 

Where xtest(j) is jth test observation such that: 

xtest(j)=[1 Xj1… Xjp] 
(17) 

2.1.4. least-squares support vector regression (LSSVR) 

Support vector machines (Vapnik, 1995) (Vapnik, 1998a) (Vapnik, 1998b) have been introduced for solving pattern 130 

recognition problems. The SVM system used to estimate regression is called Support Vector Regression (SVR) which has 

been used in various different prediction problems. This method maps data x into a high dimensional feature space using 

non-linear mapping and performs linear regression in this space. 
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f(x)=WTφ(x)+b 
(18) 

In which b∈R and W will be found by minimizing the following objective function (ζ) with constraints: 

min  ζ(W,ξ)=
1

2
WTW+γ

1

2
ξTξ 

(19) 

s.t.     𝑦𝑙=Z
TW+b1l+ξ 

(20) 

Where y is observed PBR, l is the number of observations, Z=(φ(x1),φ(x2), …, φ(xl)) in which φ is a mapping to some 135 

higher (maybe infinite) dimensional Hilbert space (H), ξ=(ξ
1
,ξ

2
, …, ξ

l
)
T
 is a vector consisting of slack variables, and γ  is a 

positive real regularized parameter. 

The Lagrangian function for the optimization problem is: 

L(W,b,ξ,α)=ζ(W,ξ)-αT(ZTW+b1l+ξ-y) 
(21) 

Where α is a vector consisting of Lagrange multipliers. So we have the following set of linear equations: 

{
 
 
 
 

 
 
 
 

∂L

∂W
=0  ⇒   W=Z.α                           

∂L

∂b
=0 ⇒   αT.1l=0                            

∂L

∂ξ
=0  ⇒     α=γξ                              

∂L

∂α
=0  ⇒   ZTW+b1l+ξ-y=0              

 
(22) 

By eliminating w and ξ, one can obtain the following linear system: 140 

[
0 1l

T

1l H
] [
b
α
]= [

0
y
] 

(23) 

Where H=K+γ-1Il and K=ZTZ which is defined as Ki,j=φ(xi)
Tφ(xj)=κ(xi,xj) and κ(0,0) is a kernel function. The solution of 

this problem can be found by the following three steps: 

(1) Solve η , ν from H.η=1l and H.ν=y ; 

(2) Compute s=1l
T.η ; 

(3) Find solution: b=ηT .y s⁄  , α=ν-b.η  145 

So we have: 

https://doi.org/10.5194/dwes-2021-7 Drinking Water 
Engineering and Science 

DiscussionsO
pe

n 
A
cc

es
s

Preprint. Discussion started: 29 March 2021
c© Author(s) 2021. CC BY 4.0 License.



9 

 

f(x)=WTφ(x)+b=αTZTφ(x)+b=∑ αTφ(xi)
Tφ(x)+b

l

i=1

=∑αTκ(x,xi) +b

l

i=1

 
(24) 

2.1.5. Regressive Convolution Neural network and SVR (RCNN-SVR): 

Zhang and Li (2018) propose a regressive convolution neural network model and combined the deep neural network with 

SVR and designed an RCNN-SVR model. This structure has two main step, the feature extraction step in RCNN model, and 

predicting step in SVR model. The feature extraction is performed by three convolution layers (Conv1, Conv2, Conv3), and 150 

three max pooling layer, (Maxpool1, Maxplool2, Maxpool3), one rectified linear units (ReLU) layer, and one normalization 

(Norm) layer (Deo and Singh, 2107). The prediction step consists of a fully-connected layer and a regression layer. 

Convolutional layers apply sliding convolutional filters to the input. The layers convolve the input by moving the filters 

along the input vertically and horizontally and computing the dot product of the weights and the input, and then adding a bias 

term. A max pooling layer performs down-sampling by dividing the input into rectangular pooling regions, and computing 155 

the maximum of each region. A ReLU layer performs a threshold operation to each element of the input, where any value 

less than zero is set to zero. Finally, a channel-wise local response (cross-channel) normalization layer carries out channel-

wise normalization. In prediction stage the support vector regression (SVR) uses features which extracted from RCNN.  

 

 160 

 

 

 

 

 165 

Figure 2. The RCNN-SVR structure. Zhang and Li (2018) 
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2.2. Model performance assessment 

In this study the performance of models is evaluated by employing Root-Mean Squared Error (RMSE), Normalized Mean 170 

Squared Error (NMSE), Normalized Mean Bias Error (NMBE) and Mean Absolute Percentage Error (MAPE) which are 

defined as below: 

RMSE=√
1

n
∑(PBRi

obs-PBRi
pre
)2

n

i=1

 (25) 

NMSE=

1
n
∑ (PBRi

obs-PBRi
pre
)2n

i=1

var(PBRobs)
 (26) 

NMBE=

1
n
∑ (PBRi

pre
-PBRi

obs)n
i=1

PBRobs̅̅ ̅̅ ̅̅ ̅̅ ̅
 (27) 

MAPE=
1

n
∑|

PBRi
pre
-PBRi

obs

PBRi
obs

|

n

i=1

 (28) 

Where n is the total number of observed data, PBRobs is the observed value of PBR, PBRpre is the predicted value of PBR, 

PBRobs̅̅ ̅̅ ̅̅ ̅̅ ̅ is mean of the PBR observed values and var(PBRobs) is variance of the PBR observed values. 

3. Case study: WDN of Joopar city 175 

The WDN of Joopar city is selected as the case study for pipe failure prediction. Joopar with an altitude of 1893 m height 

above sea level is located in about 25 km south of Kerman, Iran. It has an area of 12 Km
2 

and covers 2622 water subscribes 

with 51.6 km of water distribution pipes (Figure 3 and 4). The network with a lifespan of more than 50 years, was built in the 

early days with asbestos cement pipes and developed with polyethylene. In this case study, 158 cases of pipe failure for 

polyethylene (PE) pipes with diameters of 29.4–101.4 mm and 124 cases for asbestos cement (AC) pipes with diameters of 180 

100–200 mm have been used as regression model datasets which have been collected by author during 2012-2019. As 

mentioned, diameter, length, installation depth, age, maximum and average hydraulic pressure of pipes are considered as the 

main variables that influence the PBR of pipes. Figure 5 visualizes a graphical representation of these pipe features for burst 

cases.  

 185 
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Figure 4. WDN of Joopar overlay with the ©Google 

earth 2021 picture 

 

Figure 3. WaterGEMS model  of Joopar (Blue lines and 

red lines represent PE and AC pipes respectively) 
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(b) 

Figure 5. Histograms of each pipe feature (a) asbestos cement and (b) polyethylene 

4. Results and discussion 

Pearson correlation coefficients between PBR and pipe burst features have been determined to confirm the suggested 225 

relationship between the age, diameter, maximum and average pressure of pipes with PBR. Performances of models have 

been assessed via calculating some error criteria that helps us to find the best regression model.    

4.1. Correlation coefficients 

The linear relationship of the collected data is measured with the Pearson correlation coefficients. As can be seen from the 

obtained results listed in table 1, it is evident that there is a correlation between PBR and the pipe burst variables. A higher 230 

PBR values obtained with the higher average or maximum pressure of PE pipes. Conversely, increase in the values of length, 

diameter and depth of PE pipes decrease the corresponding values of PBR.  
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It is worth mentioning that the development of the WDN of Joopar city was performed with PE pipes, which have a 

resistance near existing pressure in the network.  So it is expected to have low correlation between age and high correlation 

between pressure and PBR. On the other hand, as represented results show, there is a negative correlation coefficient 235 

between diameter and PBR. Based on local investigations, it has been found that old asbestos cement pipes can bear a 

pressure more than the present pressure in the network.  Findings show there is a strong positive correlation between age and 

PBR because of aged pipes, verifying that by increasing the age of pipes, PBR will increase. Also it can be seen that there is 

a positive correlation coefficients between both Pavg  and Pmax and PBR . 

According to equation (1), PBR has inverse relation with length and because of low variation of failure statistics with length 240 

during the investigation period, large negative correlation can be seen in both PE and AC pipes and PBR. 

Table 1. Pearson correlation coefficients of the pipe burst rate and the effective parameters for polyethylene and asbestos cement pipes 

R(correlation coefficient) 
Variables 

Length Diameter Pavg Pmax Age Depth 

PBR of PE 
-0.561 -0.130 0.241 0.230 0.034 -0.276 

PBR of AC 
-0.567 0.012 0.162 0.186 0.782 0.065 

4.2. Evaluation of regression models performance 

According to the mentioned regression techniques, data-driven pipe burst models were set up for the asbestos cement and 

polyethylene pipes in Joopar WDN. The comparison of five methods results are listed in table 2. According to the calculated 245 

values, the RCNN-SVR model, with a relatively long computational time, is the most accurate burst rate predictor of pipes 

and has the lowest RMSE and MAPE among other methods. According to authors’ knowledge, implementing the RCNN-

SVR model for PBR prediction has not been reported yet. 

Table 2. Evaluation of the proposed models on the test data in the case study 

Performance 

indicator 

Models for PE pipes Models for AC pipes  

MARS M5' FCR LSSVR 
RCNN-

SVR 
MARS M5' FCR LSSVR 

RCNN-

SVR 

RMSE 0.37 0.30 0.38 0.35 0.052 0.27 0.34 0.20 0.26 0.071 

NMSE 0.66 0.41 0.71 0.60 0.13 0.23 0.36 0.13 0.20 0.016 

NMBE -0.24 -0.11 -0.23 -0.25 -0.011 -0.026 -0.11 -0.07 -0.13 -0.013 

MAPE 0.33 0.17 0.31 0.30 0.040 0.13 0.14 0.14 0.16 0.04 

 250 

Figure 6 compare the observed PBRs with the values predicted by regression models. Graphs show that the PBR values 

predicted by the RCNN-SVR model have the best compatibility with the observed PBRs. 
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Figure 6. Comparison of the observed PBRs with the values predicted by regression methods for case study 

5. Conclusion 

Failure of pipes in water distribution networks (WDNs) is an inevitable event that leads numerous issues. Prediction of pipe 280 

burst helps to optimize the budget allocation and better utilization programming. This paper compared and evaluated five 

artificial intelligence and machine learning methods; multivariate adaptive regression splines (MARS), M5' regression tree 

(M5'), Least square support vector regression (LS-SVR), fuzzy regression based on c-means clustering (FCMR) and 

regressive convolution neural network with support vector regression (RCNN-SVR) for pipe failure prediction and 

implemented them in Joopar WDN as a real case study.  Pipe failure data were collected during an eight-year-period and 285 

consist of 124 cases for asbestos cement (AC) and 158 cases for polyethylene (PE) pipes with 100-200 mm and 29.4-101.4 

mm diameter respectively. Models were setup based on pipes age, diameter, length, installation depth, maximum and 

average hydraulic pressure of pipes as the input variables and pipe burst rate (PBR) as model output. Models performance 

has been compared with error assessment criteria such as Normalized Mean Bias Error (NMBE), Normalized Mean Squared 

Error (NMSE), Root-Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE).  Findings show that 290 

RCNN-SVR is the most accurate prediction model, which has the lowest values of RMSE, NMSE and MAPE which can 

effectively predict the burst rate. The positive correlation coefficient between age and PBR is high in approximately 50-year-

old AC pipes and low in PE pipes. Also analyses show that there is positive correlation between pressure and PBR for PE 

and AC pipes. As length is one of the main parameters in PBR formula, the correlation between length and PBR is evident.  
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