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Abstract. The aim of this work was to evaluate a smart electronic tongue device as an alternative for qualitative and 36 

quantitative monitoring of drinking water. The smart electronic tongue consisted of a voltametric polypyrrole sensor array, 37 

coupled with a multi-channel electronic system (multipotentiostat) based on PSoC technology controlled from a smartphone 38 

with data acquisition and a control app. This device was used in the monitoring of drinking water from the Sincelejo city water 39 

supply system; also, water samples collected and analyzed by the public health agency were used. The voltammetric 40 

measurements carried out with the smart electronic tongue showed cross-sensitivity of the polypyrrole sensor array, which 41 

allowed the discrimination of the samples through of principal component analysis by artificial neural networks. In addition, 42 

the voltammetric signals registered with the smart electronic tongue allowed, through Partial Least Square (PLS) by artificial 43 

neural networks analysis, estimating the concentrations of some important analytes in the evaluation of the physicochemical 44 

quality of drinking water with R2 values higher than 0.70. The results allowed to conclude that the smart electronic tongue can 45 

be a valuable analytical tool that allows, in a single measure, to perform qualitative and quantitative chemical analysis 46 

(alkalinity, calcium, residual chlorine, chlorides, total hardness, phosphates, magnesium, and sulphates), it is also a fast, 47 

portable method that can complement traditional analyzes. 48 

1 Introduction 49 

In recent decades, there has been an increase in interest and concern for the quality control of food, drinking water, beverages, 50 

and in general, products for human consumption. To accomplish this control, in addition to reliable methods, it has been sought 51 

to have fast methods that allow real-time and online surveillance. In the particular case of drinking water, analyses are usually 52 

carried out using techniques and methods that mostly require sophisticated and specialized equipment, such as UV-Vis 53 

spectrometers, chromatographs, mass spectrometers, infrared spectrometers, atomic absorption spectrometers, among others 54 

(Richardson et al., 2017; Rice et al., 2017). In general, this kind of equipment is expensive and requires qualified personnel 55 

for their handling, they are also bulky equipment that consume significant amounts of energy, and can only operate in facilities 56 

or laboratories suitable for their operation. Furthermore, most of the analyses require sample pre-treatment, long processing 57 

times, and generate a considerable amount of chemical waste. These conditions and restrictions in traditional analytical 58 

approaches have led to the development of cheaper, faster, easier, and more efficient alternative technologies. The above has 59 

led to the generation of new technologies, among which there is  the electronic tongues (Arrieta et al., 2019; Atas et al., 2020; 60 

Dias et al., 2015; Legin et al.,2019). 61 
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Electronic tongues are analytical devices, made up of a non-specific chemical sensor array, with cross-sensitivity, coupled to 62 

a multichannel measurement system and an app or software that allows pattern recognition (Vlasov et al., 2005). A certain 63 

analogy can be established between the human gustatory taste system and electronic tongues, in the sense that we can find 64 

some approximations in its structure and principles of operation. Figure 1, it is presented a comparative scheme that shows the 65 

similarities between the functioning of the human taste system and the artificial system. 66 

 67 

 68 

Figure 1. Functional similarities between the human taste system and an artificial system (smart electronic tongue). 69 

 70 

Although in the electronic tongue devices have been used various analytical principles such as optical, mass, frequency 71 

measurements, among others (Khan et al., 2016; li et al., 2019; Kovacs et al., 2020; Sehra et al., 2004; Aydemir and Ebeoglu, 72 

2018), the ones based on electrochemical measurements have been the most widely accepted. Devices based on potentiometric 73 

and voltammetric electrochemical measurements have been more widely accepted and have shown their effectiveness in the 74 

analysis of different types of beverages (Arrieta et al., 2019; Belugina et al., 2020; Totova and Nachev, 2020; Marx et al., 75 
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2017). Electronic tongues based on voltammetric measurements have advantages such as greater ease of sensors elaboration, 76 

low sensitivity to electronic noise, high analytical sensitivity, and versatility in terms of the voltammetric technique used 77 

(square wave, cyclic, pulse, etc.). 78 

The electronic tongues have been used in the analysis of mineral waters (Sipos et al., 2012), waste waters (Legin et al., 2019), 79 

bottled waters (Dias et al., 2015). and qualitative (sample classification) and quantitative analyses on analytes such as Na+, K+, 80 

Ca2+, Cl-, NaCl, NaN3, NaHSO3, ascorbic acid, and NaOC (Winquist et al., 2011; Atas et al., 2020), among others. However, 81 

no reports have been found on the application of this technology in the analysis of drinking water from distribution networks 82 

and on the analytes of greatest interest in the evaluation of its physicochemical quality such as hardness, alkalinity, chlorides, 83 

sulphates, chlorine, etc. 84 

The reported electronic tongue devices are mostly laboratory equipment, which limits their portability for on-site analysis. In 85 

this work, the application of a portable smart electronic tongue is reported, made up of a miniaturized polypyrrole (PPy) sensor 86 

array, a multichannel device made under PSoC (Programable System on Chip) technology and a smartphone equipped with 87 

an Android app. The recorded data were analyzed with methods of pattern recognition and regression by Partial Least Squares 88 

based on artificial neural networks. This smart electronic tongue was used to qualitatively and quantitatively analyze samples 89 

taken from the 22 points (hydrants) of the distribution system. 90 

2 Materials and Methods 91 

2.1 Collection of samples and sampling area 92 

The samples were taken from the drinking water supply network at the hydrants defined by the drinking water service provider 93 

company (ADESA SAESP), located in communities 1, 2, 3, 4, 5, 6, 7, and 9 of the city of Sincelejo – Colombia (Sincelejo 94 

mayorship, 2017), located in the northeast of the country at 9° 18'' north longitude, -75° 23''  latitude, west of the Greenwich 95 

meridian, altitude of 213 MSL. For the sampling, the national guidelines on the minimum number of samples and the 96 

distribution of sampling points established for the populations according to their number of inhabitants were taken into account. 97 

The sampling hydrants were defined taking into account the programming of the operating company of the  water supply 98 

system and the entity of surveillance and control of the quality of drinking water. Table 1 presents the summary of the 99 

programming of the sampling carried out, in which the location or geographical area was noted; commune (C), sector (S). and 100 

the place of sampling point or hydrant (H). For the sampling procedure, the protocols established by the national health 101 

authority were followed (National Institute of Health, 2019). 102 

The samples were divided into aliquots to carry out the different analyses. The characterization of the physicochemical 103 

analyzed parameters was carried out in the facilities of the departmental reference laboratory of Public Health of the Sucre 104 

Department, an entity in charge of exercising control and monitoring of water for human consumption and its characteristics. 105 

The methods and techniques used for each of the parameters analyzed were those established in the standard analysis methods 106 

required by national regulations (Richardson et al., 2017; Rice et al., 2017). 107 
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 108 

Table 1. Drinking water sampling location data. 109 

Sample 

code 

Location 
Sampling 

location 
Geographical coordinates 

(Commune and 

sector) 
(Hydrant) 

M1 C1S3 H2014 Latitude N 9° 18´25.30´´/Longitude O -75° 24´40.70´´ 

M2 C2S18 H2016 Latitude N 9° 18´38.50´´/Longitude O -75° 24´03.34´´ 

M3 C3S7 H2015 Latitude N 9° 17´26.24´´/Longitude O -75° 24´43.10´´ 

M4 C3S8 H2013 Latitude N 9° 16´58.67´´/Longitude O -75° 24´24.26´´ 

M5 C3S8 H2012 Latitude N 9° 17´07.08´´/Longitude O -75° 24´22.16´´ 

M6 C4S12 H2011 Latitude N 9° 17´21.76´´/Longitude O -75° 23´53.74´´ 

M7 C4S12 H2008 Latitude N 9° 17´49.72´´/Longitude O -75° 23´34.10´´ 

M8 C4S15 H2029 Latitude N 9° 18´01.62´´/Longitude O -75° 23´26.57´´ 

M9 C4S15 H2007 Latitude N 9° 18´15.46´´/Longitude O -75° 23´57.88´´ 

M10 C5S25 H2030 Latitude N 9° 18´25.66´´/Longitude O -75° 23´40.97´´ 

M11 C5S26 H2027 Latitude N 9° 18´13.86´´/Longitude O -75° 23´15.38´´ 

M12 C5S33 H2004 Latitude N 9° 17´56.10´´/Longitude O -75° 23´19.42´´ 

M13 C5S33 H2005 Latitude N 9° 18´01.62´´/Longitude O -75° 23´26.57´´ 

M14 C5S34 H2028 Latitude N 9° 18´27.19´´/Longitude O -75° 22´52.60´´ 

M15 C6S23 H2019 Latitude N 9° 18´46.03´´/Longitude O -75° 23´57.16´´ 

M16 C6S23 H2017 Latitude N 9° 19´09.85´´/Longitude O -75° 23´47.25´´ 

M17 C7S27 H2003 Latitude N 9° 18´52.52´´/Longitude O -75° 23´02.86´´ 

M18 C7S34 H2026 Latitude N 9° 18´09.36´´/Longitude O -75° 23´43.21´´ 

M19 C7S49 H2001 Latitude N 9° 18´12.13´´/Longitude O -75° 22´45.44´´ 

M20 C7S51 H2006 Latitude N 9° 18´16.93´´/Longitude O -75° 23´22.80´´ 

M21 C9S40 H2022 Latitude N 9° 17´49.89´´/Longitude O -75° 23´03.97´´ 

M22 C9S40 H2024 Latitude N 9° 17´50.47´´/Longitude O -75° 22´41.30´´ 

 110 

2.2 Smart electronic tongue device and measurements 111 

The smart electronic tongue developed in our laboratory consisted of a voltammetric PPy sensor array and a portable 112 

multipotentiostat controlled with a smartphone. For the elaboration of the sensor array, a card with screen-printed electrodes 113 
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from BVT Technologies (AC9C) was used, which consists of an auxiliary or counter electrode (CE), an Ag/AgCl reference 114 

electrode (ER), and seven working electrodes of graphite, which were used as substrates for the generation of the sensors. 115 

Thus, the sensor array consisted of seven PPy voltammetric sensors doped with seven different doping agents: PPy / DBS (PPy 116 

doped with sodium dodecyl benzene sulfonate), PPy / SO4 (PPy doped with sodium sulphate ), PPy / SF (PPy doped with 117 

sodium persulfate), PPy / FCN (PPy doped with sodium ferrocyanide), PPy / TSA (PPy doped with p-toluene sulfonic acid), 118 

PPy / AQDS (PPy doped with disodium salt of the acid anthraquinone-2,6-disulfonic), and PPy / PC (PPy doped with lithium 119 

perchlorate). 120 

The sensor array was prepared by chronoamperometric electropolymerization of pyrrole at 0.8 V, using an EG&G 2273 PAR 121 

potentiostat/galvanostat, controlled with PowerSuite software. The PPy with each of the dopants was electrodeposited on the 122 

graphite substrates arranged in a circular way on the commercial AC9C card. Table 2 shows the experimental conditions used 123 

in the synthesis of the sensor array. 124 

 125 

Table 2. Experimental conditions for the electropolymerization of the sensor array 126 

Sensor Acronym 
Concentration 

Pyrrole/Doping Agent [M] 

Polymerization 

time (s) 

S1 PPy/SO4 0.1/0.05 55 

S2 PPy/DBS 0.1/0.1 50 

S3 PPy/SF 0.1/0.05 65 

S4 PPy/FCN 0.1/0.1 60 

S5 PPy/PC 0.1/0.1 60 

S6 PPy/TSA 0.1/0.1 70 

S7 PPy/ AQDS 0.1/0.05 60 

 127 

The portable multipotentiostat was made on a FREESOC card with a PSoC 5LP microchip (Programmable System on Chip), 128 

which was programmed with the PSoC creator software. This electronic device was designed to simultaneously register the 129 

voltammetric signals of the seven sensors of the array through seven measurement channels. In addition, a Bluetooth card was 130 

incorporated for data transmission to a smartphone equipped with an Android app designed to control the device and record 131 

data. Details on the electrochemical polymerization techniques, the development of the electronic device and the control 132 

Android app have been previously reported (Arrieta and Fuentes, 2016; Arrieta et al., 2015, Arrieta et al., 2016). Figure 2 133 

presents an image of the smart electronic tongue and its three fundamental components are highlighted. 134 

The measurements carried out with the smart electronic tongue were carried out on 10 mL of sample at room temperature and 135 

without previous treatment. 7 replicates of each measure were made. The voltammetric signals were recorded at a sweep rate 136 

of 100 mV s-1, in a potential range of -1.0 V to 0.5 V with an initial potential of 0.0 V. 137 
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2.3 Data processing and evaluation of the qualitative and quantitative analysis carried out with the smart electronic 138 

tongue 139 

From the obtained signals during the measurements carried out with the smart electronic tongue, the current data generated by 140 

the sensor array was recorded. Each sensor generated a voltammogram of each sample, composed of 100 data, which allowed 141 

having 700 data with the entire sensor array, each one of them was a variable in the data matrix for each sample, which 142 

constituted a species "fingerprint" of the sample. Thus, when analyzing all the samples, a matrix of 107,800 data was 143 

constructed (700 variables x 22 samples x 7 replicates). 144 

 145 

 146 

Figure 2. Image of the smart electronic tongue formed by the miniaturized sensor array, portable electronic device and 147 

smartphone with an Android app. 148 

 149 

To validate the classification capacity (qualitative analysis) in drinking water samples, the matrix was subjected to a pattern 150 

recognition analysis by applying artificial neural networks for principal component analysis. By evaluating the results and the 151 

reproducibility of the method, the measurement procedure was repeated on a different group of samples, sampled 15 days after 152 

the first discrimination test and with the same sampling protocol, measurement with the smart electronic tongue and treatment 153 

of data were applied. The purpose of these experiments, was to verify the repeatability of the results obtained with the smart 154 

electronic tongue. 155 

On the other hand, a quantitative analysis was carried out from regression models using artificial neural networks for Partial 156 

Least Squares, to establish a correlation between the voltammetric measurements registered with the smart electronic tongue 157 

and the concentrations of eight physicochemical parameters related to drinking water quality (alkalinity, calcium, residual 158 

chlorine, chlorides, total hardness, phosphates, magnesium, and sulphates) were evaluated. The physicochemical parameters 159 

were determined using the traditional methods validated by the norms and standardized methods (Richardson et al., 2017; Rice 160 

et al., 2017). That is, created prediction models were generated from the data obtained in the characterization process with the 161 

smart electronic tongue (matrix X, independent variables) and the physicochemical parameters determined using the traditional 162 

methods in each water sample (Y matrix, dependent variables). In this way, the concentrations of the physicochemical 163 
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parameters of drinking water determined by traditional methods were evaluated against those predicted by smart electronic 164 

tongue through regression models.  165 

The chemometric treatment of the data was carried out using specific artificial neural networks designed under the MATLAB 166 

V 7.12 program using Neural Network Toolbox v.3.0 (Kong et al., 2017). The data were not pretreated and to select the number 167 

of latent variables, a "cross-validation" was performed before building the prediction model. Calibration and validation were 168 

performed from the concentrations determined by the methods and techniques established in the standard analysis methods 169 

required by national regulations (Richardson et al., 2017; Rice et al., 2017). 170 

3 Results and discussions 171 

3.1 Voltammetric Response of Smart Electronic Tongue 172 

Once the samples were collected at the sampling points, the respective measurements were done by using the smart electronic 173 

tongue in an aliquot of 10 mL and the measurement time was 4 minutes per sample. The voltammetric signals showed cross 174 

sensitivity in the sensors; each sensor presented a particular response in the same sample, which means that each one provided 175 

information about the analyzed sample, which constitutes the “fingerprint”, with anodic and cathodic processes of the PPy 176 

against the samples (Arrieta et al., 2004).  In Figure 3, the response of the sensor array against sample M1 (C1S3-H2014) is 177 

presented as an example. It can be showed in the graphs, that the voltammetric signal of the sensor S1 (PPy/SO4), shown an 178 

anodic process at - 0.249 V and in the cathodic sweep a reduction process could be observed at - 0.875 V. The response of the 179 

sensor S2 (PPy/DBS) shown a redox process, with an oxidation peak at - 0.109 V and a wide reduction peak in the cathodic 180 

scan at - 0.799 V. 181 

The signal recorded with S3 sensor (PPy/SF) consisted of two anodic processes at 0.249 V and - 0.351 V. On the other hand, 182 

the voltammetric response of S4 sensor (PPy/FCN) presented a signal with poorly defined anodic and cathodic process at 0.287 183 

V and - 0.124 V, respectively. The voltammetric responses of the S5 sensor (PPy/PC) and S6 (PPy/TSA) shown in both cases 184 

a redox process, composed of an anodic peak at 0.03 V for PPy/PC and - 0.252 V for PPy/TSA. Whereas cathodic scanning it 185 

could be seen that PPy/PC presented the reduction peak at - 0.747 V, while the PPy/TSA cathodic scanning shown the reduction 186 

peak at - 0.821 V. The voltammetric signal of the S7 sensor (PPy / AQDS), presented an oxidation process in the cathodic 187 

wave at 0.202 V. 188 

Besides, the cross sensitivity was evaluated, which is the capacity of the sensor array to generate particular signals in front of 189 

each one of the samples. In Figure 4 the behavior of the S1 sensor (PPy/SO4) against some water samples taken at different 190 

sampling points (M1, M2, M3, M4, and M5) is shown as an example. Accordingly Thus, the main differences are observed in 191 

the position of the peaks (redox potentials) of each of the sensors and the shapes of the curve. This allows obtaining information 192 

from the analyzed water samples. Starting from this fact, and to extract the information contained in the signals, a pattern 193 

recognition analysis was performed using artificial neural networks for principal component analysis. 194 

 195 
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 196 

Figure 3. Voltammetric signals from the smart electronic tongue sensor array recorded in the drinking water sample M1 197 

(C1S3 - H2014) 198 

 199 

In summary, it could be shown that the shape and position (redox potentials) of the peaks in the voltammetric signals were 200 

markedly different in each of the sensors and a different signal pattern was recorded in each sample, allowing them to have 201 

together a “fingerprint” of each one. In general terms, the signals were related to the entry and exit of ionic species from the 202 

water samples in the polymeric film of the PPy sensor to maintain its electroneutrality, which is why the obtained signals 203 

contain information of each of the samples analyzed (Arrieta et al., 2004). 204 

 205 
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 206 

Figure 4. Voltammetric signals of the S1 sensor (PPy/SO4) recorded in different samples of drinking water. 207 

 208 

3.2 Qualitative analysis 209 

From the recorded signals, a matrix was constructed with the data obtained in each of the measurements. The matrix was used 210 

to perform a pattern recognition analysis to classify the samples, Figure 5 shows the result obtained from the pattern recognition 211 

analysis by artificial neural networks for principal components, applied to the values supplied by the voltammetric signals 212 

recorded for the different water samples. The two principal components represented show a variance of 72.09%.  213 

In Figure 5, each point corresponds to a sample taken from a hydrant or sampling point taken in the respective geographical 214 

area (commune C, sector S, and hydrant H). The first principal component (PC 1) summarizes the most information with 215 

56.49% and the second principal component (PC 2) also collects a significant amount of 15.85%. As can be seen, the different 216 

analyzed samples are remarkably distributed in the plane of the principal components with a higher concentration close to zero 217 

in both axes. In the area located in the lower right part of the graph (Figure 5 a), groups of samples may appear to be overlapping 218 

due to the high concentration of points (samples). However, when enlarging the area, it can be seen that none of the samples 219 

overlap (Figure 5 b). 220 

The samples with the greatest separation in the plane of the principal components: M1 (C1S3-H2014), M2 (C2S18-H2016), 221 

M3 (C3S7-H2015), M4 (C3S8-H2013), and M5 (C3S8-H2012), belong to communes 1, 2, and 3, which are found in the 222 

western part of the city, with sample M1 being the one with the highest degree of separation and the only sample from commune 223 

1. Whereas samples M4 and M5 belong to the same commune and the same sector present a certain proximity. This trend in 224 

the spatial distribution of the samples without forming defined groups in the principal components plane, may be due to the 225 

fact that the water supply is carried out from the main treatment site and reaches different points where temporary storage is 226 

carried out and re-pumping towards the geographical location areas. This distribution process with different storage sites can 227 

generate slight differences in the composition of some components due to the lack of homogeneity in the re-pumping points 228 

where there may be differences in storage temperature, possible mixtures, different cleaning protocols, among others. In 229 
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addition to other factors such as differences in sampling hours, maintenance of distribution lines, etc. This result showed the 230 

discrimination capacity of the smart electronic tongue against drinking water samples. 231 

 232 

 233 

Figure 5. Plot of principal component score of signals collected in drinking water samples by smart electronic tongue. 234 

 235 

Furthermore, a second test was carried out to corroborate the quality and reproducibility of these results. This trial consisted 236 

of repeating the experiences after 15 days. For this, a new group of samples collected at the same points was used and then 237 

followed with the same protocols for sampling and recording signals with the smart electronic tongue. In this way, after treating 238 

the data with the artificial neural network method for principal component analysis, a new principal component scores graph 239 

was generated from the new experiments.  240 
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When comparing the distribution and the positions of the samples with those obtained from the experiments carried out in the 241 

first test (Figure 5), it could be observed a great similarity in the results. The information collected for PC 1 and PC 2 was 242 

62.15% and 9.89% respectively, for a total of 72.04% of the information collected for the total variance, a value similar to that 243 

obtained in the first trial (72.09%). Although there are small variations, which may be the product of differences between the 244 

physicochemical characteristics of the samples, there is a high degree of reproducibility. 245 

 246 

3.3 Quantitative Analysis  247 

The ability of the smart electronic tongue to provide quantitative information of the water samples under study was explored, 248 

by obtaining correlations between the voltammetric measurements recorded by the smart electronic tongue and the 249 

concentration of some compounds or substances present in drinking water samples. For this, the data of the two sets of 22 250 

samples were taken to guarantee the robustness of the resulting models.  251 

To carry out the extraction of quantitative information, regression models of artificial neural networks for Partial Least Squares 252 

were used and eight relevant physicochemical parameters were chosen in the evaluation of the quality of drinking water 253 

(hardness, alkalinity, chlorides, residual chlorine, sulphates, magnesium, calcium, and phosphates).  254 

The results of the application of the regression analysis are shown in Figures 6 and 7 (the results were divided into 2 figures 255 

to improve the visualization). Calibration and validation were performed from the concentrations determined by traditional 256 

methods of analysis as explained in the materials and methods section. In figure 6, the regression graphs obtained from the 257 

application of the models on the parameters alkalinity, calcium, hardness, and phosphates are presented.  258 

 259 
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 260 

Figure 6. Regression models of physicochemical parameters (alkalinity, calcium, hardness, and phosphates) generated by 261 

smart electronic tongue and traditional methods of chemical analysis. 262 

 263 

It could be seen that the R2 (coefficient of determination) reached values of 0.701 in the case of phosphate, 0.818 for alkalinity, 264 

0.828 and 0.866 for calcium and hardness respectively. Therefore, it can be considered that the smart electronic tongue 265 

presented ability to predict the concentration of these substances. 266 

In Figure 7 the graphs obtained for the physicochemical parameters of residual chlorine, chlorides, magnesium, and sulphates 267 

are presented. In this case, a linear correlation can be observed with R2 values of 0.315 for residual chlorine, 0.70 for chlorides, 268 

0.788 for sulphate content, and 0.825 for magnesium content. The R2 values obtained in the case of residual chlorine show 269 

low correlation, which may be due to the fact that residual chlorine is a not stable parameter.  270 

 271 
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 272 

Figure 7. Regression models of physicochemical parameters (residual chlorine, chlorides, magnesium, and sulphates) 273 

generated by smart electronic tongue and traditional methods of chemical analysis. 274 

 275 

The instability of the residual chlorine in the water can be caused by the volatility of the chlorine, which is highly affected by 276 

light and high temperatures and although the samples were refrigerated in the sampling process, the city of Sincelejo is a city 277 

withing tropical area that registers an annual average temperature of 27 °C, which can affect both the traditional chemical 278 

analyzes carried out in the reference laboratory, as well as the measurements carried out with the smart electronic tongue.  279 

As mentioned above, studies have been reported on the use of electronic tongues for water analysis in which the correlation 280 

coefficients are lower than those obtained in this work. However, the strict comparison of the results obtained becomes 281 

inaccurate because the analytes (analytical parameters), sample types and nature of the in situ analytical procedure on which 282 

this work focuses are different from those reported by other authors (Gutiérrez-Capitán et al., 2019; Carbó et al., 2018). 283 

 284 
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4 Conclusions 285 

The monitoring of the quality of drinking water through devices capable of providing information quickly, at low cost, and 286 

that allow measurements to be carried out in situ, can help improve the quality of life and health in remote populations. This 287 

work evaluated the application of a portable smart electronic tongue, made with a PPy sensor array, a multipotentiostat 288 

controlled by a smartphone as a drinking water monitoring device. The results of the study allowed to conclude that the 289 

voltammetric signals registered by the sensor array of the smart electronic tongue in samples of drinking water showed cross 290 

sensitivity, that is to say, each sensor in the array registered a different signal against one drinking water sample, also the 291 

signals of the recorded drinking water samples were different from each other, constituting this in a pattern or "fingerprint" of 292 

each analyzed sample. Each measurement took about 4 minutes to carried out, which represents a reduced time when compared 293 

with the traditional methods of chemical analysis used in the physicochemical characterizations of water samples. 294 

This behavior allowed, through the application of artificial neural networks for principal components analysis, to discriminate 295 

between drinking water samples, a fact that reflects a good discrimination capacity of the smart electronic tongue. The results 296 

obtained with the analysis of the 22 samples and their replicas, showed discrimination capacity of the smart electronic tongue, 297 

with reproducible discrimination results. 298 

Also, it could be shown that the smart electronic tongue provided quantitative information of some of the physicochemical 299 

parameters in the evaluation of the quality of drinking water. For this, the data were treated using regression models, with the 300 

aim of extracting quantitative information from the signals. Coefficient of determination values higher than 0.70 were 301 

established, which evidenced the capacity of smart electronic tongue to provide information on substances of analytical interest 302 

that determine the quality of drinking water. 303 
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