Interactive comment on “Design methodology to determine water quality monitoring strategy of surface water treatment plants” by Petra Ross et al.

Joep van den Broeke (Referee)
joep.van.den.broeke@kwrwater.nl

Received and published: 18 June 2019

The authors would like to thank the Referee for its thorough review and comments provided. We have reviewed the comments and below our remarks and adjustments made in the paper are indicated.

The paper “Design methodology to determine water quality monitoring strategy of surface water treatment plants” describes the application of a well-considered generic design strategy to analyse the possibilities and impossibilities of using available water quality sensors at one particular water treatment plant. The design strategy has been derived from a similar strategy developed for a control design methodology by the (co)authors van Schagen en Rietveld (van Schagen et al in Water Science and Technology, 10, 121-127, 2010).

After a discussion of the aspects to be considered in each of the steps of assessment proposed, one case study is discussed in which an existing monitoring strategy was analysed and optimised.

Unfortunately, it is in the description of this case study and the subsequent conclusions, that the paper fails to address a number of essential elements that are necessary to judge the effectiveness of the design methodology. We value the feedback received and acknowledge the fact that the paper the real plant application and related improvements were not proven. As a result we have chosen to modify the objective, discussion and conclusions of the paper to focus on a practical application for drinking water practitioners and the support the 7 step framework can give as a first step to develop an on-line water quality monitoring strategy.

Whereas sensor technology, characteristics of available types of instruments as well as treatment process characteristics and operational handles are described in substantial detail, no attention is giving to the following aspects:

1) although making selection a combination of sensors, and suggesting (page 13, lines 37-38) that this new combination was actually installed, the only comment the authors make about the results achieved is that more information is now available (page13 line 38) and that the balance between disinfection and by-product formation might be improved (page 13 line 49). The former is not an achievement of the presented methodology (any additional sensor installed would have resulted in more information becoming available) and the latter also follows from previous works by the authors, and but this is not confirmed in this study. Therefore, no improvement in process control or effluent water quality (the goals of this study, page 2, lines 31 - 37) are demonstrated. The paper has been modified to not claim improvements in process control or water quality but to demonstrate what a potential water quality monitoring strategy can be based on the gained understanding of the processes taking place.
2) As the authors present a method to determine (and/or optimise) a water quality monitoring strategy, it would be logical that the paper presents the results of the selected strategy and demonstrates that the outcome of the methodology actually produces an optimal monitoring setup. The authors do describe the selection process by describing both sensor options and processes (but not presenting any new information) but do not present any cost benefit analysis of the selected strategy, nor do they give any proof of how it improves the pre-existing monitoring setup at the location analysed. Therefore, the effectiveness of the design methodology cannot verified based on the results presented. This was not the scope of the current paper. Although the authors feel that above would be a good next step to perform research on.

3) An implementation section, describing the experience with the actual deployment and operation of the sensors, this validation the methodology is missing. For an example, this reviewer would like to point the authors to the van Schagen paper (2010) from which the method described here was described. This paper has an implementation section where the approach is validated As result of the above the authors' conclusion (also found in the abstract) that the water quality programme of the Weesperkarspel plant was optimised is not sufficiently supported. The same is true for the conclusion on the use of soft-sensors (also mentioned in the abstract) - the authors state that the use of soft sensors helps to gain online information on parameters for which no online sensors are available. Although this may be correct, no new evidence to support this is presented in this paper. For this to be presented as one of the two major conclusions of the paper, it would be reasonable to expect the authors performed and analysis on the effectiveness of soft sensors in this type of application, and/or would have performed a cost benefit analysis (including CAPEX as well as OPEX costs) of using soft sensors vs. direct measurements. This paper was focused on the first step to understand what could be options around on-line monitoring. The objective, discussion and conclusions have been modified to show how to set up a monitoring framework in practice and not promising to provide the reader with a methodology that was proven to optimise a plant.

Specific comments

Page 1 - line 26: The authors appear to extrapolate the situation in the Netherlands to a generic statement (regarding sampling frequency). This is, however, incorrect. The sampling frequency depends on the size of the utility and the population served. It also depends on the parameter analysed. This statement currently is too generic. Either it should be restricted to the situation in the Netherlands (where all water companies/treatment plants are so large daily sampling is required or the water companies themselves take daily samples even if not required), or this statement should be rephrased taking into account daily practice also at smaller utilities in other countries. Amended to primarily focus on the Netherlands.

Page 2 - line 3: time between sampling and analysis takes at least one day. The authors ignore the intermediate option of rapid tests that can be performed on-site. Utilities use such rapid tests for on-site measurements, e.g. to calibrate online sensors but also for data collection. Various parameters can even only be measured in this way (e.g. DO, O3, ...). It might be worth adding this type of analysis to the discussion, especially in view of the comment in the next sentence - such
rapid tests can be used to verify performance. The sentences have been modified to include the rapid tests and clarify above “Besides on-line measurements, laboratory measurements are taken at a regular interval to check the on-line measurements and that the produced drinking water meets the quality standards set by national and international guidelines. However, besides the rapid tests performed at Site, the time between sampling and laboratory results takes at least one day. This delay in results and interval between measurements makes it difficult to only use the laboratory measurements for real-time control of a treatment plant”.

Page 2 - lines 5 - 6: In addition, it should not be underestimated that erroneous control and measurement devices can also cause disturbances (van Schagen et al., 2010). It is not clear what the authors are trying to say with this sentence. Is the goal of this sentence to indicate that human operators can make mistakes and online sensors will detect this? Then remove the reference to erroneous measurement devices. If the goal is to stress the importance of correct use (installation, maintenance, …) of online sensors, then this should be discussed separately. Currently, this sentence suggests online sensors are not trustworthy, whereas the next paragraph stresses the usefulness of such devices. These are now contradicting each other. The sentence has been removed. The purpose of the sentence was to address the importance of correct use.

Page 3 - line 39: please reconsider this statement; fast degradation does not necessarily mean a need for high sensitivity and high accuracy. Sensitivity and accuracy will depend on where the measurements are taken and what the purpose of the measurement is. Examples: Does one want to verify the concentration dosed (at injection point) then the decay is less important and concentration will still be high. Downstream concentrations will be lower. but if initial concentration were high (e.g. with other chemical than ozone) still a not-so-sensitive sensor would still do the job. It seems that a fast measurement is most important for rapidly decaying ozone. The statement has been changed to reflect the requirement of a fast measurement as is correctly pointed out above.

Page 4 - lines 26 - 28 Here it is stated the chapter focuses on mixed influent and mixed effluent for the processes ozonation and BAC filtration. However, in the preceding sentence the authors described the treatment plant consists of two parallel lanes. If this is correct, then the methodology appears to be incorrectly applied as it focused on the non-existent situation of mixed ozonation effluent and mixed BAC influent. Could the authors clarify this and if this is indeed the case (2 treatment lanes and no combination of the water between ozonation and BAC filtration), please correct the text. This can be solved by rephrasing lines 26-28 and removing the reference to the mixed streams. This has been amended into: “At Weepserkarspel, the production of drinking water is roughly divided into two parallel lanes (north and south lane), each consisting of several individual reactors/filters per treatment step. In each lane the water is mixed after each treatment step. The control actions can be modified at individual level, however, for the purpose of this paper it has been chosen to focus on the mixed influent and effluent of one lane only and not on the individual reactor/filter level.

Page 5 - lines 21 - 22: The authors state that the adsorption capacity (of the carbon filters) decreases with increasing polarity (of the organic matter). It appears that the equilibrium between adsorption and desorption will shift and the affinity of more polar organic matter for the carbon filter surface will be reduced. However, the adsorption capacity of the carbon (the maximum amount of material it can adsorb) should not be affected, as the ozonation does not change the surface properties of
the adsorbent. The adsorption capacity has been modified into adsorption affinity. Furthermore it has been added that due to the pre-oxidation step, the NOM is not only removed through adsorption but in additional also through biodegradation. In addition please see the response to below question.

Page 5 - lines 22 - 23: As a result NOM is removed through ... adsorption. The current wording states that because NOM is oxidised and becomes more polar it is removed through biodegradation and adsorption. Is this true, i.e. would NOM be removed only through biodegradation or adsorption if no ozonation takes place? If no ozonation or peroxidation would have taken place, the main removal mechanism of NOM in Activated carbon would be through adsorption also referred to as Granular Activated Carbon (GAC) filtration. By enhancing the biodegradability due to oxidation of the NOM into smaller organic molecules, biodegradation is strongly promoted. It is not so much the polarity, but more the biodegradable organic matter that is formed after oxidation, which enhances biodegradation.

Page 5 - lines 33 - 34: Therefore, ... control action. This appears to be a missed opportunity. The authors indicate the flow through the plant is variable (because determined by the demand for drinking water). This means the flow through the treatment lanes is variable. Keeping flow constant could be a very useful control measure for the performance of individual treatment steps. Changes the division of the water over the different production lines, (although not used currently) could thus be used to manage the performance of the treatment processes, and optimise it. E.g. though keeping one lanes at ideal operational conditions, which might result in better net quality of the mixed effluent. It would have been worth investigating this possibility. Eliminating this option at the beginning of the evaluation was a missed opportunity. Did the authors consider this type of evaluation? Due to the presence of clean water storage reservoirs a certain buffer capacity is guaranteed to overcome strong fluctuations by the changes in demand for drinking water. The text has been modified to clarify this. As a result of this buffering capacity, the treatment lanes are typically operated at a constant flow, hence no further optimization is required at this stage. The following sentence has been added: “Due to the buffering capacity of the clean water storage reservoirs, the treatment plant is already operated at a constant optimized flow, Therefore, in this case, production flow was not considered as a control action.”

Have the authors considered this possibility? Is there information (other than the fact that the plant operators do not use this control option) that it would not be been relevant? Please see above.

Page 5 - lines 45-46. Because pH is important for the functioning of the BAC filters, can one be sure that the influent water (the effluent of the pellet softeners) is always at the correct / optimal pH? If this is the case, it is correct to disregard this parameter for control of the BAC. If the pH can be variable (e.g. because there is no real-time control of the CO2 dosing), then pH control should be seen as a control action for the BAC, even though the actual dosing equipment might be part of the pellet softener. Please add a statement that explains why it is not necessary to adjust pH before BAC, e.g. because it is always the same or because it is actively controlled in the softening. The pH is actively controlled as part of the softening step. The following sentence has been modified to reflect this: “Dosing of carbon dioxide is actively controlled based on the measured pH This control action is thus more which is related to the functioning of the pellet softeners and therefore not included in the overview provided in Figure 1.”
Page 6 - lines 14 - 15: Monitoring of TOC/DOC/SUVA will only be necessary if the composition of the NOM changes. The authors describe the water is seepage water, which is groundwater. Please explain why this variable is relevant for the operation of this treatment plant: is there a variable composition in NOM that would necessitate monitoring in this example. The feed water is mainly humics’ rich seepage water which is sometimes mixed with Amsterdam-Rhine canal water. When looking at the ozone influent the DOC fluctuates between 4.5 – 8 mg-C/L and the SUVA between 1-3 ((1/m)/mg-C/L). The mixing with Amsterdam-Rhine canal water has been added to the case study description.

Page 6 - line 28: Bromate is possibly or probable carcinogenic. Suggest to refer to only one reference that reflects the latest insights into this topic. Referring to both possibly and probable is confusing. Amended.

Page 6 - line 38: ATP or flowcytometry. Please explain this statement. There was no reference before to these methods and as to why they would be required. Therefore, the statement on the absence of a need for these methods is confusing and seems irrelevant. Amended to show that no on-line measurement of bacterial cells is required which was shown by Ross et al. (2019), instead of creating confusing by translating the measurement of bacterial cells by the mentioning of possible methods that can be used.

Page 8 - bromide: bromide sensors (ion selective electrodes) are available from various manufacturers. Please correct. Amended

Page 8, Ozone, soft sensor available. Yes, developed based on UV measurement The measurement of ozone using UV spectroscopy is a direct measurement; O3 has a distinct spectrum which is directly measured. In the case of a soft sensor a number of measurements are taken together to estimate a parameter which can not directly be measured. For O3 by UV spectroscopy this is explicitly not the case, as the O3 spectrum itself is directly measured. Amended.

Page 12 - lines 27-28: When evaluating... it is not required to monitor ... due to robustness of the BAC filtration step. As the fact that it is not necessary to monitor the AOC was already known from previous work by the authors, why did they ignore this knowledge in the preceding discussion. This type of prior knowledge should flow into the design methodology as early as possible, as it prevents a waste of time (e.g. in this case the discussion on AOC could have been skipped). The way the methodology is set-up is to first focus on the individual treatment steps and subsequently performs the final check if any measurements can be removed based on the integral assessment of the treatment plant. Therefore in this specific case it turned out that it was not required to monitor the AOC due to the robustness of the BAC filters in Weesperkarspel. For any other plant this should be verified and might nog be the case.

Technical corrections

Page 3 line 43: in "A wide range of measurement" Methods or Methodologies or Techniques would be a better term. A measurement is the action of measuring. Amended into ‘methodologies’

Page 3 line 49: measurement range sensitive enough Incorrect English: the measurement range is wide enough or the method is sensitive enough. Amended into ‘method sensitive enough’
Page 5 - line 1: IpH should read pH Amended

Page 7 - line 4: the word back-wash is missing between "treatment train, next" Amended

Page 7 - line 6: in figure 1 and text describing this figure, it is stated that pressure drop is measured. In this sentence (page 7, line 6) the authors suggested it is not yet measured, but should be measured. Check for consistency and correctness. In the Results section it is described that based on the theory the pressure drop should be measured. In the used example (Figure 1) this happens to be the case, hence the described practice matches the theory.

Page 8: UV254 Hach 2018 it is strange to refer to the website of one manufacturer for a method which has been on the market for 20+ years and which is sold by a range of manufacturers. Please find a better reference for this. Example:https://iwaponline.com/ebooks/book/435/Compendium-of-Sensors-and-Monitorsand-Their-Use this report contains an exhaustive overview of parameters for which online sensors were available at the time of publication. Suggested reference included and replaced for the manufacturer references.

Page 8: Surrogate parameters, UV254: Incorrect statement: measurement at all wavelengths is not a surrogate for UV254. If an instrument can measure across this range, it can also provide UV254, but the full spectrum is not a surrogate for UV254. Amended

Page 8, bromate, Thermofisher 2018 Please explain this reference: referring to one manufacturer as proof that no online method exists is unconvincing. Please only indicate no (as above) which shows the authors have not found a method, or refer to an impartial review. Amended

Page 8: ozone, Hach as comment for UV254. Amended, suggested reference as above has been included

Page 9: Phosphate, Hach as comment for UV254 and Ozone Amended

Page 9: nitrogen please specific more precisely what parameter is meant here. Total nitrogen, Kjeldahl N, NO3? Kjeldahl-N, amended in text

Page 10 lines 10 -11: incorrect cause-effect relationship: the fact that the WHO published parameters does not mean sensors are available (as is suggested here). There are many parameters for which this is not the case. A more correct statement would simply be that for a number of WHO parameters sensors are available and then give some examples. Reference to WHO has been removed. Sentence has been modified to ‘There are sufficient on-line sensors available to measure the pH, temperature and DO.’

Page 12: i::scan Why mention specific product where it is only the parameter that is relevant. This product was not discussed before, nor are specific products described for turbidity and pH. Suggest to remove reference to specific product. Reference in Figure 3 has been removed, in the text it was kept in to indicate that Weesperkarspel had chosen to specifically focus on UV254 instead of the full spectrum.

Page 13 line 6 and line 7: TM should be in superscript Amended

Page 13 line 7: s::scan should be s::can or scan Messtechnik GmbH Amended into ‘s::can’
GENERAL COMMENTS

This manuscript can be described as a highly applied research paper, bringing together formerly published concepts and applying them to two treatment units of specific drinking water treatment plant. Taking into account the importance of the topic, and the applied character of the journal, I am of the opinion that its publication will be valuable for many practitioners.

I agree with Referee 1 that a weakness of the paper is that real plant application and related improvements were not proven. However, coming back to the drinking water practitioners, the value lies in demonstrating the 7 step framework in a very easy way.

Most likely, not many drinking water plants have made such structural exercises, and this paper can lower the barrier of doing so. Hence, the objective of publishing this paper is not necessarily to present novel knowledge, but to show how to set up apply a monitoring framework in practice. It is important that the authors therefore reframe the paper as such, that it does not promise to provide the reader with a methodology that was proven to optimise a plant. It has the potential for that. The focus should be on illustration of practical use of such a framework, and the offering of a methodology to structurally question’s one’s train monitoring and control strategy. We have modified the objective, discussion chapter and conclusions of the paper in line with above suggestions. The objective has been changed to: “Therefore, in this paper a design methodology is described which helps to develop a water quality monitoring scheme. This will be explained by means of a case study for the WTP Weesperkarspel in the Netherlands.”

The discussions have been changed to address advances in on-line water quality monitoring, reliability of the data and on-line water quality monitoring strategy instead of direct control based on water quality.

The first paragraph of the conclusions have been changed to: “The main objective of this paper was to develop a design methodology supporting the development of a water quality monitoring strategy. A seven step approach was defined, and each step was demonstrated for the treatment processes ozone and BAC filtration. It was shown how the previous on-line water quality monitoring program of the treatment plant Weesperkarspel was adjusted based on a better understanding of the processes taking place.”
SPECIFIC COMMENTS
There are very recent efforts going on with regard to on-line bromate sensor development, based on fluorescence measurement. This might be mentioned. The company Metawater is working on this (https://www.metawater.co.jp/eng/product/rd/sensor_technology/bromic_acid.html). Fluorescence as a means of characterising NOM properties has not been mentioned. However, one-wavelength sensors are now being introduced on the market. Their benefit compared to UV-VIS might be their sensitivity at low DOM levels. We have included a general message on ongoing developments and chosen to include only references to published work. A reference to fluorescence has been included in the paper in the section required water quality parameters addressing the characterization of NOM.

TECHNICAL CORRECTIONS
Some references are missing in the reference list. Examples: are Rieger et al., 2004; van der Helm et al., 2009. Please check for completeness. Potentially others are missing. -This paper is probably part of a PhD thesis. Amended, full paper has been checked and missing references added.

Remove any references to that, such as p4, line 27 (‘Chapter’) Amended to ‘paper’

typo at p4, line 16: ‘imbedded’ should be ‘embedded’ Amended

p5, line 11: title should be Treatment step objectives, instead of treatment plant objectives: Amended

typo at p7, line 22: ‘in the first columns’ Amended

typo at p7, line 31: ‘evaluation of available on-line sensors and their ...’ Amended

p10, line 24: ‘cheap’ –>describe more scientifically Amended to low-cost
Design methodology to determine the water quality monitoring strategy of a surface water treatment plants in the Netherlands

Petra Ross*, Kim. van Schagen**, Luuk. Rietveld*

*Delft University of Technology, PO Box 5048, 2600 GA Delft, the Netherlands, p.s.ross@tudelft.nl
**RoyalHaskoningDHV BV, PO Box 1132, 3800 BC Amersfoort, the Netherlands

Abstract
Primary goal of a drinking water company is to produce safe drinking water fulfilling the quality standards defined by national and international guidelines. To ensure the produced drinking water meets the quality standards, sampling of the drinking water is carried out on a regular (almost daily) basis. It is the dilemma that the operator wishes to have a high probability of detecting a bias while minimizing his measuring effort. In this paper a seven step design methodology is described which helps to determine on how to come to an optimised water quality monitoring scheme. It was shown that the previous on-line monitoring program of a WTP could be optimised. Besides using soft-sensors as surrogate sensors for parameters currently not available on-line, they can also possibly provide a cost effective alternative when used to determine multiple parameters required through one single instrument.

Keywords
Data requirements; design methodology; model-based optimization; soft-sensors

INTRODUCTION
Primary goal of a drinking water company is to produce safe drinking water fulfilling the quality standards defined by national and international guidelines. To ensure the produced drinking water meets the quality standards, in the Netherlands, sampling of the drinking water is carried out on a regular (almost daily) basis. Common practice in the Netherlands is that (drinking) water treatment plants (WTPs) are designed in such a robust way that the effluent quality can be guaranteed without direct control on the incoming water quality (Vanrolleghem and Lee, 2003;Bosklopper et al., 2004). A WTP consists of several individual treatment steps placed in series, with every treatment step being responsible for the removal (or addition) of certain compounds. All the interactions between the processes ask for an integrated plant-wide approach, optimizing the effluent quality and operational costs (Bosklopper et al., 2004;Nopens et al., 2010).

Van der Helm et al. (2008b) investigated three possible objectives for plant-wide optimization of operation of existing WTPs and concluded that the objective for integrated optimization should be the improvement of water quality and not a reduction in environmental impact and costs. The effects of these latter two are negligible compared to the environmental impact and costs for the society as a whole when more bottled water is used for drinking water as a result of insufficient (confidence in) tap water quality.

Direct control of water quality becomes more and more important as a result of more stringent criteria and the deterioration of source water (Vanrolleghem and Lee, 2003;van Schagen et al., 2010). Especially WTPs that use surface water as a source, experience increased pollution in the form of organic micropollutants and increased organic matter concentrations present in the surface water bodies (Verliefde et al., 2007;Bertelkamp et al., 2014). Besides, large fluctuations in water temperature and water quality can be noticed, which increases the need for direct control of the WTP.

Nowadays, many WTPs are monitored and controlled by SCADA (Supervisory Control and Data Acquisition) systems (Jansen et al., 1997). The functions of SCADA systems for WTPs include: (1) collection of on-line measurement data, (2) surveillance of the measuring chain including operations and (3) process control and other relevant operations (Gunathilaka and Dreher, 2003). On-line measurements are the first indicators that give the operators information about the state the plant is in. Besides on-line measurements, laboratory measurements are taken at a regular interval to check the on-line measurements and that the produced drinking water meets the quality standards set by national and international guidelines. However, besides the rapid tests
performed at Site, the time between sampling and laboratory results takes at least one day. This delay in results and interval between measurements makes it difficult to only use the laboratory measurements for real-time control of a treatment plant (van de Ven et al., 2010). In addition, it should not be underestimated that erroneous control and measurement devices can also cause disturbances.

Retrieving reliable and robust on-line information is therefore important in order to be able to control a WTP. This information can be retrieved from on-line sensors that measure a specific parameter directly, but also from generic sensors that give indirect information. Roccaro et al. (2008), Rieger et al. (2004) and van den Broeke et al. (2008) showed the ability of UV-Vis spectra measurements, measuring the absorbance of ultraviolet or visible light, to estimate different parameters such as chlorine decay, nitrite and nitrate, ozone and assimilable organic carbon (AOC) concentrations. These estimations were derived from algorithms developed, based on a change in UV-Vis absorbance during a treatment step and laboratory measurements, using principal component analysis followed by partial least squares regression. These types of generic sensors are so-called soft-sensors, sensors that require software to give the required information. Juntunen et al. (2013) developed a soft-sensor to predict the turbidity in treated water and to find the most significant variables affecting turbidity. A soft-sensor can be developed in different ways, based on black box, grey box or white box modeling. The black box approach is characterized by an empirical relation between the input and output. The relations are derived from historical, full-scale plant data. Thus, such a soft-sensor can only be applied in the situation where it has been developed for, since a black box model is not valid when a process is operated outside the boundaries of calibration. Because the operation of a WTP is relatively constant, the calibration dataset is normally rather limited, hampering the application of black box modeling. Grey box models are a combination of black box models and white box models, such that it contains some more insight into the system through the white box model, while still some parts of the model are data driven. White box models mathematically describe the physical-chemical processes that take place in the treatment process. Developing these models is time consuming, however, when developed, the process knowledge on the processes are captured, leading to more generically applicable models.

Optimized control can only be reached if there is a high probability of detecting a bias in the operation of the WTP. At the same time, from an economical perspective, the data should be obtained with minimal measuring efforts and costs. Understanding the requirements with respect to on-line monitoring and data reliability is a first step towards direct control of the drinking water production based on the incoming water quality. Therefore, in this paper a design methodology is described which helps to develop an optimized water quality monitoring scheme to support direct control. This will be explained by means of a case study for the WTP Weesperkarspel in the Netherlands.

MATERIALS AND METHODS

Design methodology
Van Schagen et al. (2010) developed a methodology for the design of a control system for drinking water treatment plants. This methodology was based on experiences with control design procedures for chemical plants and was modified to fit the main objectives of a drinking water treatment plant. In the basis, the same methodology was used for the design of an optimized water quality monitoring scheme. The methodology takes into consideration 1) the objectives, 2) operational constraints and 3) disturbances. These first three steps determine the required water quality parameters. The subsequent steps help to determine the conditions the water quality information should comply with:

1. Determine treatment step objectives;
2. Determine operational control options;
3. Determine water quality parameters taking into consideration both process and control aspects;
4. Identify process characteristics;
5. Evaluate available (indirect) measurements;
6. Determine individual monitoring strategy per treatment step.
7. Determine integrated monitoring strategy of treatment plant.

Treatment step objectives
The treatment step objectives depend on the feed water quality and the type of treatment step considered. The overall objective of a drinking water treatment plant is the production of safe drinking water fulfilling the quality standards defined by national and international guidelines. The main objective of a treatment step for an existing plant should be the focus on water quality and less on the chemical or energy consumption (van der Helm et al., 2008b). Therefore it should be evaluated which parameters, present in the feed water quality, can be influenced per treatment step. In order to do so process knowledge on the different treatment steps is indispensable (Poch et al., 2004). Van Schagen (2009) indicated that mathematical models are a powerful tool to evaluate the sensitivity to process objectives and disturbances and help find the appropriate controlled variables.

Operational control options
Depending on the design of the treatment step certain operational control options are available to make changes to the treatment process. Examples of operational control options are the change in chemical dosage, flow division and backwash and regeneration frequency. The primary focus is on the operational changes that can be performed within the existing plant lay-out.

Required water quality parameters
Based on the treatment step objectives and existing operational control options, the water quality parameters that are influenced by the treatment step are determined. Ideally these water quality parameters should be monitored. Besides the water quality parameters that are influenced by a treatment step, there are water quality parameters that influence the efficiency of a treatment step. For example, the water temperature has an effect on the ozone decay rate. The decay rate increases with increasing temperatures (Elovitz et al., 2000). This may result in a higher required ozone dose in summer time, taking into consideration that the disinfection requirements are also different with different temperatures.

Process characteristics
The required monitoring frequency and sensitivity of the selected water quality parameters may also vary depending on the process characteristics. The process characteristics describe the time interval during which changes occur and the order of magnitude in which changes occur. For instance, the contact time in an ozone reactor can vary from a couple of minutes to one hour, depending on the dimensions, while the time between two regeneration cycles of activated carbon typically is expressed in years. These different reaction times require different measurement frequencies. The order of magnitude relates to the required accuracy of the measurement. For example, ozone typically degrades quickly in water due to the reaction with organic compounds in the water. This determines that the required measurement sensitivity and accuracy frequency should be high.

Evaluate available measurements for the identified water quality parameters
Based on the evaluation of the required water quality parameters and existing process characteristics the available (on-line) measurements should be evaluated. A wide range of measurement methodologies exist for determining water quality parameters, from certified laboratory measurements to on-line measurements. Depending on the variability of the process, the turnaround time of laboratory measurements is not always fast enough. To come to an optimal water quality monitoring scheme also on-line water quality sensors should be considered. In this study the following evaluation criteria for the available on-line sensors were assessed: Easiness; is the sensor easy to use, is the measuring principle easy to understand; Sensitivity; is the measurement range method sensitive enough; Maintenance; does the sensor require much maintenance; Costs for laboratory measurements as well as the purchasing and maintenance costs for on-line sensors were indicated. Besides on-line sensors developed to measure one specific parameter, available surrogate sensors, used to estimate a water quality parameter value, and soft-sensors were assessed.

Determine individual monitoring strategy per treatment step
The individual monitoring strategy defines which water quality parameters per treatment step should be monitored, with a selected frequency and location. The evaluation of available measurements for the identified water quality parameters forms the basis for the monitoring strategy, subsequently ranked by the most critical parameters in the treatment plant. Criticality is determined by two factors, 1) parameters of which the measured concentrations are close to the not to exceed limit and 2) parameters that can be potentially harmful to human health.

Determine integrated monitoring strategy of treatment plant

The integrated monitoring strategy defines which water quality parameters are monitored, taking into consideration the interaction between the different individual treatment processes. The evaluation of available measurements for the identified water quality parameters forms the basis for the monitoring strategy, again ranked by the most critical parameters in the treatment plant. The monitoring strategy can be embedded into the process control strategy to ensure optimized control based on the most critical parameters.

Case study: Ozonation and biological activated carbon filtration at Waternet

At the production location Weesperkarspel of Waternet, the water cycle company of Amsterdam and surroundings, ozonation, pellet softening, biological activated carbon (BAC) filtration and slow sand filtration are the main steps in the production of safe drinking water. The feed water is humics rich seepage water from the Bethune polder, sometimes mixed with Amsterdam-Rhine canal water, which is pre-treated by coagulation, sedimentation, approximately 100 days retention in a lake reservoir followed by rapid sand filtration, before it is transported to the Weesperkarspel treatment plant. At Weepserkarspel, the production of drinking water is roughly divided into two parallel lanes (north and south lane), each consisting of several individual reactors/filters per treatment step. In each lane the water is mixed after each treatment step. The control actions can be modified at individual level, however, for the purpose of this Chapter paper it has been chosen to focus on the mixed influent and effluent only and not on the individual reactor/filter level. The treatment processes ozonation and BAC filtration have been evaluated. These processes are frequently applied at surface WTPs and are susceptible to changes in the feed water quality. Besides, these processes have several control options and an interaction between the two processes exists.

Previously, the following on-line measurements were installed to monitor the ozonation and BAC filtration process (Figure 1).

RESULTS
The results of the evaluation of each step, to come to an optimised water quality monitoring scheme, are described below, followed by a discussion on the outcomes of the assessment versus the previous and current monitoring strategy. Research carried out at the pilot plant of Weesperkarspel was used to obtain full understanding of the processes taking place and enabling the determination of the objectives and required water quality parameters.

Treatment plant-step objectives

In general the primary objective of ozonation is disinfection (von Gunten, 2003b). Besides, ozonation is frequently used for the oxidation of organic micro pollutants, taste, odour and colour producing products and natural organic matter (NOM), transforming higher molecular weight compounds into lower molecular weight compounds. For the ozonation step at Weesperkarspel, the specific objectives are disinfection and oxidation of NOM (van der Helm, 2007).

The general objective of activated carbon is the removal of organic micropollutants, removal of precursors of disinfection-by-products and the removal of organic compounds causing colour, taste and odour issues (van der Aa et al., 2011). When activated carbon is preceded by a pre-oxidation step, the biological activity in the water and on the activated carbon is enhanced, resulting in BAC filtration. At the same time ozonation increases the polarity, resulting in a decrease in adsorption capacity- affinity (Sontheimer et al., 1988). As a result of the pre-oxidation step, NOM is removed through both biodegradation and adsorption. At Weesperkarspel the purpose of BAC filtration is the removal of organic matter, to prevent biological growth in the distribution system and to remove toxicity, taste and odour causing compounds (Graveland, 1996). Besides, the BAC filters remove the carry-over from the preceding pellet softening step.

Operational control options

The production flow is controlled by the demand for drinking water. The buffering capacity in the treatment plant is the clean water storage reservoirs situated before the water is distributed to the customers (van Schagen et al., 2010). To ensure sufficient reliability, the treatment plant is set up in a redundant way with multiple lanes operated in parallel. It is possible to change the flow division over the different production lanes, however this is only done when one of the lanes has less treatment capacity or is out of production due to e.g. maintenance. Due to the buffering capacity of the clean water storage reservoirs, the treatment plant is already operated at a constant optimized flow. Therefore, in this case, production flow was not considered as a control action.

The only remaining control action for ozonation is the ozone dosage. The ozone dosage is obtained by a combination of ozone in gas concentration and the gas flow. Both parameters can be adjusted to obtain the desired ozone dosage.

For BAC filtration the control actions within the existing treatment setup are the backwash frequency, currently operated at every couple of days till once a month interval per filter and backwash program, currently a combination of air and water is used. The activated carbon is regenerated every year to three years. Carbon dioxide is dosed before the BAC filters to correct for any high pH resulting from the caustic soda dosage in the pellet softeners. Dosage of carbon dioxide is actively controlled based on the measured pH. This control action is thus more related to the functioning of the pellet softeners and therefore not included in the overview provided in Figure 1. A high pH could negatively affect the biodegradation efficiency (Seredyńska-Sobecka et al., 2006) and promotes precipitation of calcium carbonate on the activated carbon grains. Oxygen and caustic soda can be dosed in the effluent of the BAC filters to correct low pH and oxygen concentrations as a result of the biological activity in the filters.

Required water quality parameters

As indicated previously, ozone is an unstable oxidant in water. Ozone decomposition in water consists of a fast initial phase (seconds range) and second phase (minutes range) during which ozone concentration decreases via first order kinetics and disinfection of the more resistant pathogenic microorganisms takes place (von Gunten, 2003a; van der Helm et al., 2008a). A commonly used method to determine the disinfection capacity of ozonation is by calculating the exposure of pathogens to ozone, expressed as the Ct value, a product of the (residual) concentration of the disinfectant (C), in this case ozone and contact time (t) (WHO, 2008).
Water quality parameters that influence the efficiency of the ozonation step are temperature, pH and, for Weesperkarspel relevant, scavengers such as NOM concentration and character (von Gunten, 2003a). A measurement commonly used to indicate the NOM concentration is the dissolved organic carbon (DOC) concentration. The DOC concentration is determined by filtering the sample over a 0.45 µm filter and measuring the total organic carbon (TOC) concentration. In order to assess the character of NOM, the specific UV absorbance (SUVA) can be calculated by dividing the UV absorbance measured at a wavelength of 254 nm (UV254) by the DOC concentration (van der Helm et al., 2008b; Edzwald and Tobisano, 1999). Another method is to use fluorescence excitation emission matrices to characterize the NOM (Baghoth et al., 2011; Sgroi et al., 2018). These water quality parameters play a role in the ozone dosage required to achieve the desired disinfection and should therefore be monitored. For Weesperkarspel it was determined that disinfection of Giardia, Cryptosporidium and Campylobacter is sufficient to determine the microbiological safety of the water (van der Helm et al., 2008b). To be able to monitor the efficiency of the ozonation step, at least one of the following parameters should be measured:

- Pathogenic micro-organisms such as Cryptosporidium, Giardia and Campylobacter.
- Ozone concentration at different contact times, to be able to determine the Ct value (van der Helm et al., 2009);
- During ozonation disinfection by-products are formed. The oxidation of NOM promotes the presence of AOC concentration in water (van der Kooij et al., 1989). AOC promotes regrowth of bacteria in a distribution system, amongst others, and, therefore, should be sufficiently removed in the subsequent treatment steps. Water without residual chlorine is considered to be biologically stable if the AOC concentration is below 10 µg Acetate-C/L, whereas water with residual chlorine is defined as biologically stable for AOC concentrations below 50 µg Acetate-C/L (van der Kooij, 1992; Escobar et al., 2001). Besides AOC, bromate is formed if bromide is present in the feed water. Bromate is possibly or probably carcinogenic to humans (USEPA, 2018)
- During BAC filtration, biodegradation takes place by microorganisms, present on the external surface and in the macro-pores of the BAC filter grains, that biodegrade the NOM in the water (Servais et al., 1994). The activity and concentration of the biomass determines the degradation rate of NOM (Lazarova and Manem, 1995). The activity and concentration of the biomass depends on the concentration of nutrients (carbon, phosphate and nitrogen), the dissolved oxygen concentration, temperature, pH and residual disinfectant in the feed water (Simpson, 2008). Uhl and Gimbel (2000) described that for the biological removal of ammonia, the deposit of bacterial cells from the influent was necessary to maintain a solid biofilm. However for Weesperkarspel it was shown that the feed in bacterial cells to the BAC filters was not necessary to obtain a sufficient biodegradation efficiency (Ross et al., 2019), hence no on-line measurement of ATP or flow cytometry on-line measurement of bacterial cells was is required. Besides biodegradation taking place, adsorption of NOM and toxic, colour, taste and odour compounds takes place. In addition, at Weesperkarspel, BAC filtration is simultaneously applied for the removal of suspended solids and carry-over. Due to clogging of the filter bed by suspended solids, carry-over and in some cases biomass, the filters need to be backwashed frequently. The pressure drop over the filters and turbidity in the effluent indicates the state the filter is in, and whether it needs to be backwashed. In case of Weesperkarspel the pressure drop is the determining parameter.

Process characteristics

Ozone is dosed to the water, after which reaction takes place in the seconds to minutes range. A change in ozone dose or change in feed water quality can have an immediate effect on the effluent quality. In the past, the dosing strategy was determined by the water temperature, with two different set points, below 12 °C and above 12 °C. Van der Helm et al. (2009) suggested that this negatively influenced the disinfection during ozonation. However, more detailed research by Wiersema (2018) could not confirm this. Since ozonation is one of the main processes that can achieve disinfection, high frequency monitoring is required enabling direct control of the ozonation step.

In contrast to ozonation, BAC filtration is not a dosing process, but a separation/degradation process by means of filtration, adsorption and biodegradation. The different processes all have their associated time intervals. The shortest time interval is the clogging of the filters, which, depending on the location in the treatment train,
Backwashing needs to be carried out every couple of days till once a month. Backwashing occurs based on pressure drop over the filter or after a maximum period of time. The pressure drop should be monitored on a regular basis.

As indicated in the required water quality parameters section, the activity of the biomass present on the carbon grains determines the biodegradation efficiency. Ross et al. (2019) showed that a change in feed water quality does not necessarily result in a change in effluent quality, hence there is no direct need for close monitoring of the filters. In case the feed water quality changes for a longer period of time, the biomass will adapt itself to the new situation, which can take up to 2-3 months (Servais et al., 1994).

Depending on the NOM loading, the activated carbon starts showing breakthrough of organic micro pollutants and pesticides after a run time of 6-9 months if no biodegradation takes place, while if biodegradation takes place this can last up to 2-5 years before the activated carbon needs to be regenerated (Simpson, 2008). Although BAC filters have proven their ability to intercept sudden changes in water quality, the DO can be used as an indicator for the biological activity in the filter and identifying any disruptions taking place (van Schagen, 2009).

Evaluate available measurements for the identified water quality parameters

A summary of the required water quality parameters, as determined in the paragraphs describing the water quality parameters, can be found in the first columns of Table 1 (ozonation) and Table 2 (BAC filtration). In the second column it is indicated per parameter if an online measurement, able to measure at the limit of detection required, is available. Depending on the monitoring frequency required, as described in the process characteristics paragraphs, it was determined if a parameter should be available online. If the monitoring frequency should be daily or more, it was indicated with a yes in the third column. To gain a better understanding of the applicability of the online sensors, the ease of use, sensitivity and maintenance requirements were evaluated in columns four through six. The costs related to a measurement in lab and installation of an online sensor are listed in column seven.

Evaluation of availability online sensors and their characteristics was based on literature research, indicated by the references included per parameter. Besides online sensors that measure one specific parameter, available related surrogate parameters (column eight) and soft-sensors (column nine) were also captured. It should be noted that for some surrogate parameters and soft-sensors a start concentration is required first before the concentration of the requested parameter can be estimated.
<table>
<thead>
<tr>
<th>Table 1 Summary water quality parameters required to monitor ozonation and associated available on-line sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>pH</td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>DOC</td>
</tr>
<tr>
<td>UV254</td>
</tr>
<tr>
<td>Pathogenic micro-organisms</td>
</tr>
<tr>
<td>AOC</td>
</tr>
<tr>
<td>Bromate</td>
</tr>
<tr>
<td>Bromide</td>
</tr>
<tr>
<td>Ozone concentration in water</td>
</tr>
</tbody>
</table>

n.a. = not applicable, n.r. = not required.
Table 2 Summary water quality parameters required to monitor BAC filtration and associated available on-line sensors

<table>
<thead>
<tr>
<th>Parameter</th>
<th>On-line available</th>
<th>On-line required</th>
<th>Easy</th>
<th>Sensitive enough</th>
<th>Maintenance</th>
<th>Costs lab/online</th>
<th>Surrogate parameters</th>
<th>Soft-sensor available</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Low</td>
<td>lab/online: low</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Phosphate</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Moderate</td>
<td>lab: moderate online: moderate</td>
<td>n.r.</td>
<td>n.r.</td>
<td></td>
</tr>
<tr>
<td>Nitrogen K (Kjeldahl -N)</td>
<td>No</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
<td>lab: moderate online: n.a.</td>
<td>n.r.</td>
<td>n.r.</td>
<td></td>
</tr>
<tr>
<td>DOC</td>
<td>Yes via TOC measuremen t</td>
<td>No</td>
<td>Moder ate</td>
<td>Yes</td>
<td>High, 0.45 µm filters and reagents are required to be replaced</td>
<td>lab: moderate online: high</td>
<td>n.r.</td>
<td>n.r.</td>
</tr>
<tr>
<td>AOC</td>
<td>No</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
<td>lab: high online: n.a.</td>
<td>n.r.</td>
<td>n.r.</td>
<td></td>
</tr>
<tr>
<td>Viable bacterial cells</td>
<td>No</td>
<td>n.a</td>
<td>n.a</td>
<td>Moderate</td>
<td>lab: moderate online: high</td>
<td>n.r.</td>
<td>n.r.</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Moderate, needs regular calibration</td>
<td>lab/online: low</td>
<td>No</td>
<td>Yes through water quality (WQ) modeling after dosages of a base or acid based on measured influent pH (van Schagen et al., 2009)</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Low</td>
<td>lab/online: low</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Pressure drop</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Low</td>
<td>lab: moderate online: low</td>
<td>n.r.</td>
<td>n.r.</td>
<td></td>
</tr>
</tbody>
</table>

n.a. = not applicable, n.r. = not required.
Determination of individual monitoring strategy per treatment step

Figure 2 shows the individual monitoring strategy per treatment step determined by the water quality assessment captured in Table 1 for ozonation and Table 2 for BAC filtration. The results are described in detail below.

Figure 2 Required on-line water quality information for optimized monitoring and control of ozonation and BAC filtration

pH, temperature, and DO

The pH, temperature, and DO are compliance parameters published by the WHO. There are sufficient on-line sensors available to measure the pH, temperature, and DO. These sensors are relatively easy to use and sensitive enough. The pH sensor requires frequent maintenance. The costs of measurement, either on-line or in laboratory are low. The efficiency of ozone is, amongst others, determined by the pH and temperature and should therefore be monitored continuously. The DO and pH are a continuously controlled effluent parameter in BAC filtration. The pressure drop indicates if a filter needs to be backwashed. The DO and pH are an indicator for the biological activity in the filter and capable of identifying any disruptions taking place (van Schagen, 2009).

DOC and UV254

The NOM concentration, measured through DOC, is a scavenger and does directly interfere with disinfection, requiring to be monitored in the influent of the ozone step. The used ozone dosages hardly affect the DOC concentration, limiting the need for monitoring downstream of the ozone step (van der Helm et al., 2008a). For TOC there is an on-line sensor available which measures sensitive enough. By inclusion of a 0.45 µm filtration step the DOC is determined. It does require frequent maintenance for replacing the 0.45 µm filters and reagents. The on-line sensors are still expensive whilst the lab measurements are cheap-low-cost and around 20 euros per sample. Alternatively, an UV absorbance sensor measuring the UV absorbance at wavelength of 254 or 280 nm can be used as a generic sensor providing insights in the reactivity of ozone with the organic matter (Westerhoff et al., 1999). Besides direct measurement or a generic sensor, Langergraber et al. (2003) developed a soft-sensor allowing to estimate the DOC concentration based on measured UV/VIS wavelengths and by applying principal component analysis followed by partial least squares regression. These soft-sensors do require to be calibrated locally based on an obtained dataset from lab measurements. The UV/Vis sensor is, besides regular cleaning, easy to maintain, and less than half the price of a specific TOC sensor. Besides DOC, UV254 also determines the efficiency of ozone and should therefore be monitored continuously. A specific on-line sensor is available which only measures UV254, is easy to use, sensitive and low in maintenance and costs. An alternative generic sensor is the UV/Vis sensor which measures all wavelengths between 200-735 nm. This should only be used instead if the sensor is used to measure other parameters, such as DOC, as well.
AOC, bromate and bromide

AOC and bromate are disinfection by-products formed during ozonation. Depending on the influent concentrations of DOC and bromide and the amount of ozone dosed, the AOC and bromate concentration are determined. There is no on-line sensor available for measuring the AOC concentration in accordance with the approved standard methods (Eaton et al., 2005). AOC is one of the disinfection by-products that needs to be monitored. A change in organic matter composition and/or ozone dose will directly result in a change in AOC concentration, therefore requiring on-line monitoring in the effluent of the ozone step. AOC is subsequently biodegraded in BAC filtration and enhances the microbiological activity in the filters. Ross et al. (2019) showed that a sudden change in AOC concentration does not result in a direct deterioration of the effluent quality of the BAC filters. Therefore, a continuous monitoring of the AOC concentration in the effluent of the BAC filter is not required. The lab measurements are high in costs, due to the labour intensity of the analysis. Hammes and Egli (2005) developed a quicker laboratory method to determine the AOC concentration using flow cytometry. Until now this method is only available as off-line method and therefore not suitable for on-line monitoring. The water quality model developed by van der Helm et al. (2009) is able to predict the formation of disinfection by-products such as AOC by using Matlab/Simulink®. Another soft-sensor is the software algorithm published by Ross et al. (2016) that uses different UV/Vis wavelengths to predict the AOC formation.

There are no on-line sensors available for measuring the bromate and bromide concentration. Bromate needs to be monitored for compliance since it is possibly carcinogenic and is not removed in existing downstream treatment steps. A change in bromide concentration or a change ozone dose can impact the bromate concentration directly. The bromide levels in the influent of the Weesperkarspel treatment plant have been very stable, requiring no need for continuous monitoring. Since the bromate levels can change with changing ozone dose, on-line monitoring of bromate in the effluent of the ozone step is proposed. The lab measurements are moderate in costs, due to the reagents required. Van der Helm et al. (2008a) found a linear relationship between the bromate concentration and Ct value, allowing the Ct value to be a surrogate parameter once the initial bromate concentration is known. Cromphout et al. (2013), found a linear relationship between ozone dose, temperature and bromate formation. These models can be used to predict the bromate concentration based on the ozone dosed, temperature, pH and bromide concentration in the influent. Another available soft-sensor is the software algorithm published by Ross et al. (2016) using different UV/Vis wavelengths to determine the Ct value and bromate formation. It should be tested till what extent these algorithms can be locally calibrated for changing bromide concentrations.

Pathogenic micro-organisms and ozone concentration in water

There are no on-line sensors available to specifically measure a certain pathogenic microorganism. The lab measurements are high in costs, due to labour intensity of the analysis. The pathogenic microorganism concentration in the influent together with above parameters do determine the required ozone dosage and therefore require continuous monitoring. The USEPA (1989) published Ct values for determining the log inactivation of pathogenic microorganisms for different water temperatures. This allows the Ct value to be used as a surrogate parameter if the influent concentration is known. The water quality model developed by van der Helm et al. (2009) is able to predict the Ct value based on above measured parameters and applied ozone dose. In addition, Ross et al. (2016) published a software algorithm that uses different UV/Vis wavelengths to determine the Ct value. Verification via lab analysis of pathogenic microorganisms on a weekly/monthly basis, depending on the variability of the source water quality, will help determine the log inactivation and associated Ct value to be achieved. Besides using soft-sensors to determine the Ct value based on a change in UV/Vis pattern, the ozone in water can be determined by on-line measurements. These measurements do require local calibration by means of lab measurements. It is an easy and sensitive measurements that does require regular maintenance to prevent biofouling. Cost of on-line and lab measurements are moderate due to the calibration fluid required. In order to be able to determine the Ct value based on the ozone in water concentrations, multiple sampling points are required in space.

Phosphate and nitrogen
Phosphate, nitrogen and carbon are the nutrients required for the microbiology in the BAC filters to grow on. Phosphate is a frequently on-line measured and controlled parameter in wastewater environments. The available on-line measurements are easy to use, sensitive enough, but do require regular maintenance due to reaction agents used. The costs of both lab and on-line application are moderate. To the authors knowledge there are no on-line nitrogen measurements available. The costs of lab measurements are moderate. In the current treatment plant setup there is no option to alter the phosphate or nitrogen concentration (by means of dosing) and as a result there is no need to continuously monitor these concentrations in the influent of the BAC filters.

Viable bacterial cells

Viable bacterial cells are present in the surface water. During ozonation typically disinfection of viable bacterial cells takes place, which subsequently can regrow in following treatment steps (Vital et al., 2012). The determination of viable bacterial cells has developed in the last couple of years from a laborious intensive measurement using microscopy, to rapid determination in the lab using flow cytometry to customizing the flow cytometry equipment for on-line applications (Besmer et al., 2014;Besmer et al., 2017). Ross et al. (2019) showed that the effect of viable bacterial cells in the influent of the BAC filters is limited in respect to the performance of the BAC filters, therefore discarding the need for on-line monitoring. The costs of both lab and on-line measurements are still high but expected to reduce in future as per the innovation taking place to enhance rapid detection.

Pressure drop

The pressure drop is typically measured to determine the clogging ratio in the filter bed. Pressure drop measurements are available on-line and have been fully developed. It is an easy measurement, which is sensitive and low in maintenance. The costs are low. For BAC filtration it is, besides turbidity, the main indicator if a filter is clogging and needs backwashing. On-line monitoring is therefore required and frequently applied.

Determination of integrated monitoring strategy of treatment plant

When evaluating the ozonation and BAC filtration step as an integrated system, it is not required to monitor the AOC in the effluent of the ozonation due to the robustness of the BAC filtration step (Ross et al., 2019). The DO concentration in the influent of the BAC filter will always be sufficient as a result of the preceding ozonation step, therefore there is no need to continuously monitor this concentration in the influent. For Weesperkarspel, the temperature of the water and pH will not change due to application of ozonation, hence there is no need to monitor this in the influent of the BAC filters.

In Figure 3 the current monitoring strategy of Weesperkaspel is shown. This strategy was adjusted per the outcomes of the different research described in this paper (van der Helm, 2007;Ross et al., 2016;van Schagen, 2009).

![Monitoring strategy diagram](image-url)
When comparing the sensors installed in Figure 3 with Figure 2, considering the sensors that can be skipped based on the integrated approach, only 4 differences are observed. In the influent of the ozone step only UV254 is measured instead of UV254 and DOC and the turbidity is measured. In the effluent of the ozone step the i::scan™ is installed measuring at a wavelength of 254 nm instead of the s::scan™ able to measure the full spectrum allowing for estimation of bromate and Ct value. However, the Ct value can also be calculated by the installed ozone measurements and the UV254 can give a good indication of the achieved Ct as well (Westerhoff et al., 1999). No differences are observed for the BAC filtration step, when considering the integrated approach.

DISCUSSION

Advances in on-line water quality monitoring

Evaluation of available on-line sensors showed that there are sufficient on-line sensors available to measure the pH, temperature and DO parameters typically measured to show compliance with the WHO standards are commonly available (Adu-Manu et al., 2017). Furthermore a lot of developments have taken place around sensors and monitors (Van den Broeke et al., 2014). Direct measurements of the more complex parameters such as AOC and bromate are not available on-line. When looking at required on-line information for integrated control of ozonation and BAC filtration, bromate is to be monitored continuously. In this case the use of soft-sensors, able to estimate the bromate and AOC formation, help to gain continuous on-line data. Besides using soft-sensors as surrogate sensors for parameters currently not available on-line, they can also provide a cost effective alternative when used to determine multiple parameters required through one single instrument. Examples in this case were the use of UV-Vis sensors for the determination of UV254 concentration in the influent, the estimation of DOC in influent and effluent, formation of bromate and AOC during ozonation and estimation of Ct value in the effluent of the ozonation step through one measurement.

Reliability of the data

On-line identification of disturbances is only possible if the identified water quality data are accurate and continuous (van Schagen et al., 2010). Furthermore the confidence the operators have in the data is crucial, especially when soft-sensors are applied instead of direct measurement (Ikonen et al., 2017). If possible, measurement via two different methods can be applied for a period of time, to gain confidence by the operators to rely on soft-sensors to provide with the correct information. In this case the Ct value can be obtained via ozone in water measurement multiplied by contact time or estimated via the change in UV-Vis measurement. It should be recognized that the use of on-line sensors does require knowledge of the use of the sensors and (frequent) maintenance to ensure the reliability of the data.

Direct control based on water quality

On-line water quality monitoring strategy

When comparing the previous on-line information (Figure 1) with the current on-line sensors placed at Weesperkarspel (Figure 3) it can be seen that in the current situation more on-line information is available. The current situation comes close to the required situation as depicted in Figure 2, when considering the integrated approach the expansion of the number of on-line sensors was driven by a better understanding of the processes taking place based on the research performed and the desire to measure these processes. During the installation and test phase continuous attention was required to identify any deviations or maintenance requirements at an early stage. Currently the installed sensors act as an early warning system to flag any deviations in water quality and operation. The next step would be the direct control based on water quality.

Fluctuations in incoming water quality and subsequent required change in ozone dose to achieve the objectives set forth of achieving sufficient disinfection while minimizing the disinfection by-product formation require direct continuous monitoring and direct control. Van der Helm et al. suggested that the control of ozonation step and balancing between disinfection and disinfection by-product formation, can already be greatly enhanced when...
adjusting the ozone dose based on the measured water temperature. However, more detailed research by could not confirm this. By adjusting the ozone dose on incoming NOM concentration, the balance between disinfection and by-product formation might be improved.

CONCLUSIONS
The main objective of this paper was to develop a design methodology able supporting the development of a water quality monitoring strategy, to support future direct control of the drinking water treatment plant based on incoming water quality. A seven step approach was defined, and each step was demonstrated for the treatment processes ozone and BAC filtration. It was shown how the previous on-line water quality monitoring program of the treatment plant Weesperkarspel was optimized based on a better understanding of the processes taking place, and subsequently can be finetuned in future.

Evaluation of available on-line sensors showed that the parameters typically measured to show compliance with the WHO standard (temperature, pH and DO) are commonly available. Direct measurements of the more complex parameters such as AOC and bromate are not available on-line. The use of soft-sensors, able to estimate the bromate and AOC formation, help to gain continuous on-line data. Besides using soft-sensors as surrogate sensors for parameters currently not available on-line, they can also provide a cost effective alternative when used to determine multiple parameters required through one single instrument. Examples in this case were the use of UV-Vis sensors for the determination of UV254 concentration in the influent, the estimation of DOC in influent and effluent, formation of bromate and AOC during ozonation and estimation of Ct value in the effluent of the ozonation step. The on-line data obtained by the (soft-) sensors will help provide the operator to control the treatment plant based on its objectives and provide continuous information whether the processes are operating within the required operational window.

ACKNOWLEDGEMENTS
This research was financially supported by the 6th EU framework project TECHNEAU (contract number 018320).

REFERENCES

Wiersema, Y.: Efficiency and efficacy of ozonation for disinfection at the Weesperkarspel drinking water treatment plant, MSc, Utrecht University, Utrecht, 2018.