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Abstract. Nowadays, settling tank's removal efficiency is one of the most crucial matters for all Water or 

Wastewater Treatment Plants (WTPs or WWTPs). The unit can affect WWTP performance and improve the 

provided effluent quality. In this paper, the geometrical aspects of a settling tank were numerically analyzed 

via tracer curves, the finite volume method, and Ansys-cfx software in which, the baffle depth and diameter of 

a settling tank were assessed. Firstly, a previous study was similarly remodeled to verify simulation results. 

The impact of tank depth variation has been numerically assessed where the outcomes showed that a deeper 

tank could raise discharge time or the Hydraulic Retention Time (HRT). Thus, extensive discharge time may 

result in less polluted effluent degrading more solids. However, the tank should not be too deep based on 

costs. Moreover, the differential effect of baffle height was analyzed and indicated that lower height is more 

useful to boost the HRT. An investigation of tank diameter changes also revealed that wider diameters bring 

about a broader HRT.   
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1. Introduction 

Over the past decades, Water and Wastewater Treatment Plants (WWTPs) have drawn government attention to 

water, especially, environmental hazards originating from grey and sewage runoff throughout urban areas. In 

this regard, treatment processes can be optimally designed and operated. Therefore, one of the most critical 

stages in WWTPs is sedimentation in settling tanks, to degrade and remove organic matters and solids. Looking 

at research shows that several models have simulated and analyzed the sedimentation process numerically. To 

simplify methods, some assumptions were effectively used to evaluate flow pattern movement, as well as solids 

and particles in settling tanks.  

According to previous studies, mathematical models are often applied instead of analytical solutions to reach 

precise flow characteristics (Imam et al., 1983). Moreover, three methods are suggested to have an appropriate 
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description of flow pattern movement and characteristics (Kynch, 1952). Firstly, the one-dimensional model is 

introduced in which solids vertical movement is considered (Kynch, 1952). Secondly, the two-dimensional 

model is presented for vertical and horizontal solid movement. The matter which was once used to simplify the 

three-dimensional model (Imam et al., 1983). Ultimately, the three-dimensional model has more benefits thanks 

to orienting the flow pattern. Liu and Garcia developed a three-dimensional (3D) numerical model to simulate 

large primary settling tanks in which a tracer study was used to investigate the tank’s residence time (Liu and 

Garcia, 2010). The model was implemented on a settling tank in Chicago in the Metropolitan Water Reclamation 

District of Greater Chicago (MWRDGC). Through the case study, a computational fluid dynamics (CFD) model 

simulated solid removal efficiencies. The results of the research model were used to establish the design basis 

for tank side-water depth and inlet feed-well dimensions, etc. Liu and Garcia model outcomes can be capitalized 

on to decrease the cost of construction via optimized settling tank.    

Vahidfar et al. in 2018 investigated and modeled a rectangular settling tank in full scale by CFD method to 

increase efficiency. (Vahidfar et al. 2018). Zahabi et al. also in 2018 numerically investigated the geometry of 

rectangular reservoir to entrap sediments, and they found the optimum geometry (Zahabi et al. 2018). 

There are a wide range of parameters which can effect settling tank performance. To illustrate that, the Reynolds 

number, flow viscosity, the type of hydraulic flow movement, and tank dimension and design are the most 

significant factors in the settling unit. Schamber and Larock once used the K-ɛ turbulence model to simulate the 

settling stage applying for high Reynold's number and turbulent flow (Schamber and Larock, 1983). According 

to the study, coarse solids with high specific weight increases the Reynold's number; therefore, this type of 

model is typically conducted for a settling unit. Furthermore, a study showed that the k‐ε turbulence model 

agreed well with some experiments in a simple geometric tank (Adams and Rodi, 1990). The quality of the 

computations, however, deteriorates with increasing flow complexity. In fact, the effects of flow curvature are 

mainly applied to clarify the differences between computation and experiment, which are not a part of the 

standard k‐ε model. Also, a mathematical model was used to predict the velocity and particles transport pattern 

in secondary rectangular tanks. The particle impacts called in terms of bottom current, surface return flow, and 

the solids concentration distribution of density stratification on the hydrodynamics were analyzed by (Zhou and 

Mc Corquodale, 1992). Consequently, the model was used to simulate the so‐called density waterfall 

phenomenon in the front end of a settling tank.  

It is suggested that effluent concentration changes by velocities in the withdrawal zone (Mc Corquodale and 

Zhou, 1993). It is also shown that there is more upward velocity in the withdrawal zone by decreasing dens-

metric Froude number for a constant discharge, showing the relationship between the dens-metric Froude 

number, and hydraulic and solid loads. The density of the waterfall can capture large volumes of the ambient 

fluid in the physical and numerical models (Zhou and Vitasovic, 1992). Also, the entrainment compensating 

flow rate is indirectly related to the dens-metric Froude number. Furthermore, the bottom strength of the current 

density, the upward flow in the withdrawal zone, and the recirculation all increase as the dens-metric Froude 

number decrease due to entrainment into the density waterfall. 
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Some research also addressed an array of computational fluid dynamics (CFD) modeling in the wastewater 

treatment (WWT) field (Dutta et al., 2014, Daneshfaraz et al. 2016 and Zhang et al. 2016). For instance, Wicklein 

et al. have proposed a good modeling practice (GMP) for wastewater application and it is based on general CFD 

procedures (Wicklein, et al., 2016, Daneshfaraz et al. 2017).  

Settling basins can be divided into two categories in terms of geometry, which are cubic and cylindrical in 

shape. In this regard, circular basins are better than rectangular ones, since they need less area for construction. 

This might increase rectangular basin hydraulic efficiency (Stamou et al., 1989). In this study, some circular 

basins are considered as a three-dimensional model to simulate tank geometry and stream direction. Meanwhile, 

continuity and momentum equations will be analyzed via the finite volume method, and the density change of 

the particles is ignored. Eventually, the tracer curve will be used to evaluate hydraulic efficiency in terms of 

basin depth, and also the tank diameter variation will be studied to assess repercussions.  

2. Material and Methods 

An increase in settling time results in tank sedimentation efficiency in which considering the appropriate size 

for a tank's baffle and the weir structure are two ways to improve tank efficiency. In this light, baffles may cause 

returning flow when flow reaches the baffle and weir structure, namely, extending the distance that flow travels 

to discharge from the basin tank. In this paper, the aim is to study and evaluate the Chicago basin tank which 

was evaluated in 2011 to analyze the basin's depth and diameter changes and its effects on effluent quality 

(Garcia, 2011). In this respect, tank properties are presented in table 1. 

 

Table 1. Properties of settling tank 

Parameters Unit Dimension 

Tank diameter (m) 47.24 

Baffle diameter (m) 12.8 

Tank depth (m) 3.66 

Baffle height (m) 1.52 

Inlet pipe diameter (m) 1.37 

Bottom slope - 1:12 

 

The Chicago tank is capable of maintaining flow being treated into the basin by increasing retention time which 

happens while a weir is considered with a shorter height causing a longer distance for the flow to exist. 

Therefore, the mechanism triggers to provide more time for settling. On the other hand, the flow is turning when 

it reaches the baffle wall. In this regard, the process is going to be evaluated via the CEM-CFD model. The 

mesh in the model is 12 million rectangular meshes (Tetra Unstructured Mesh), where the larger and shorter 

bases are 10 and 2 cm, respectively. The tank which was studied by Garcia, and flow lines along with the tank 

mesh system are shown in Figure 1, 2, 3, and 4. It should be added that geometrical modeling was done by 

Ansys cfx software in the current study. K-e turbulent model also used for simulation.  
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Fig 1. Chicago tank. 

 

Fig 2. Flow lines and directions in the settling tank. 

 

 

Fig 3. Modelled settling tank. 

 

To simplify the model and obtain an accurate result, some assumptions are considered, including that the flow 

pattern is steady. Temperature variation is ignored, and flow temperature, density, and velocity are assumed to 

be constant (T=20 Co, Flow Density=998 Kg/m3). In addition, boundary conditions are conducted in three main 

terms in which the tank's surface is taken to be a slippery surface except for the bottom of the tank. The free 

surface is rigid and the flow pressure is calculated hydrostatically. Relative pressure at the end is zero, and the 

inlet is velocity radial control.  

One way to calculate the settling tank's efficiency is to draw a tracer curve. The method is defined as a way in 

which the pigment flow is carried out to the influent and then, when the pigment reaches the effluent, the 
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pigment concentration is measured. Following this, three steps are taken to draw the racer curve comprised of 

solving the flow equation steadily in ANYSY Solver, defining the pigment in the pre-CFXANSYS, and then 

checking pigment concentrations in the influent and effluent after 3 hours. It should be added that hydrodynamic 

conditions are expressed in terms of three laws in which the conservation of mass, the conservation of 

momentum (Newton's Second Law) and the conservation of energy (the first law of thermodynamics) are 

considered.  

3. Tracer curve method evaluation  

The maximum time of the flow discharge in the current study will be compared with Garcia outcomes in the 

same aspect to make an evaluation (Garcia, 2011). Figure 4 shows the comparison between these two studies in 

the sense of tracer curves. Table 1 also shows the maximum time of the tracer curves when tank depths are taken 

at a 12 foot depth and two different baffle height of 2.13 and 1.52 m to compare with Garcia's results.  

Table 2. Tracer curve outcome for the two aforementioned studies 

Time of discharge (hours) 

 (Garcia, 2011) 

Time of discharge (hours) 

 (current study) 
Baffle Height (m) Tank depth (m) 

1.22 1.19 1.52 3.66 

1.25 1.14 2.13 3.66 
 

                 

A. baffle height of 5m                                                                    B. baffle height of 7m 

Fig 4. Data dispersion in current and Garcia studies (2011). 

 

As observed, data dispersion (the current study) is in good agreement with the Garcia study in which trend lines 

are going up by a 450 slope. Beside this, the standard deviations of both A and B graphs are close to 1. Therefore, 

modeling of the Chicago tank by a tracer curve is effective and accurate enough to predict other basin tank 

depths and baffle heights.  
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4. Result and discussion 

4.1. The effect of tank depth variation  

The tracer curves evaluate the tank performance where the tank depth (Dt) and the baffle height (Df) change 

with a 5-second pigment injection. Then, the pigment concentrations will be measured in the inlet and outlet 

(effluent) over three hours to find the difference. Figures 5 and 6 display the tracer curve results for a tank depth 

variation and baffle height of 1.52 and 2.13 meter, in which the tank diameter is equal to 47.24 meter.   

 

Fig 5. Effluent concentration with a baffle height of 1.52 m in tank depth variations. 

According to Fig 5, as tank depth increases, it takes more time (tmax) to discharge effluent. Therefore, the 

Hydraulic Retention Time (HRT) will rise slightly which is more evident in peak point locations. It is clear from 

the data given that a 0.34 hr time elapse is observed from 3.66 (1.19 hr) to 1.52 m (1.53 hr) depths peak points 

distance. Moreover, the greater the tank depth is, the thinner the gaps between peak points become. Particularly, 

the gap between 4.57 and 1.22 m tank depths is narrower compared with the gap between 3.66 and 3.96 m or 

even the gap between tank depths of 3.96 and 4.27 m. If the tank depth is more than 4.57 m. the gap will not be 

noticed. Thus, tank depths which are more than 4.57 m are not economically beneficial because there would not 

be excessive time discharge for the tank. This means that building larger tanks is not cost efficient because it 

does not have a positive impact on effluent concentration.  

Furthermore, the points (t0) where the lines start to have more effluent concentration and the tank is getting 

filled with pollutions are different. To illustrate that, the starting points are 0.64 and 0.91hr, respectively, for 

tank depths of 3.66 and 4.57m. Therefore, deeper tanks get polluted later. Comparing the maximum points' 

effluent concentration indicates that the Cout/Co ratio falls markedly from 3.66 to 4.57m tank depths given that 

the optimum tank depth is 4.57m; however, there is not a significant gap between 4.27 and 4.57m depths.    
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Fig 6. Effluent concentration with a baffle height of 2.13 m in tank depth variations. 

Fig 6 (baffle height of 2.13 m) also shows a similar manner as is seen in Fig 5. Although, tmax is slightly less 

than what it is in Fig 5. Plus, the effluent concentrations (Cout/Co ratio) is almost equal for all tank depths, with 

a small drop from tank depths of 3.66 to 4.57 m. Also, the same behavior holds for t0 as has been discussed 

previously. 

Overall, there is no significant difference between a tank baffle of 1.52 and 2.13m. However, a tank baffle of 

5m can provide more HRT or discharge time by tracer curve calculations with the same properties.  

4.2. The effect of tank diameter variation  

Tank diameter can change tmax and following that effluent concentration may vary. The effect of diameter 

variation on these parameters is analyzed in this part. A tank baffle of 1.52m generates less effluent 

concentration. It is selected for the following comparison. Fig 7 and 8 display tank performances for tanks that 

are 42.67 and 51.8m in diameter, and for which tank depths are 3.66, 3.96, 4.27, and 4.57m, respectively.   
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Fig 7. Effluent concentration and tmax in tank depth variations and 42.67 m diameter. 

 

Fig 8. Effluent concentration and tmax in tank depth variations and 51.82 m diameter. 

Fig 7 and 8 show that tmax changes considerably when the diameter increases from 42.67 to 51.82m. tmax rises 

noticeably. That is even more evident for a tank depth of 4.57m in two figures in which tmax is 1.41 and 1.63hr 

for 42.67 and 51.82m diameters, respectively. Plus, there are still gaps among lines which get narrower as tank 

depth increases.     

5. Conclusion 
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In this study, a tracer curve is used to analyze settling tank performance in which the given tank is firstly 

evaluated with the previous study. The results of the evaluation were homogenized with the study and similar 

outcomes were generated. Then, the effect of tank depth variation, baffle height, and tank diameter were 

investigated. It was determined that a greater tank depth increases the discharge time. Also, when the tank depth 

is higher, the effluent concentration is lower. Comparing baffle heights of 1.52 and 2.13m showed that the 

discharge time is wider with a baffle height of 1.52 m. Therefore, smaller baffle heights are effective in delaying 

the effluent discharge time. Tank diameter variation analysis indicated that a larger tank diameter results in a 

greater discharge time, which is evident for a tank depth of 51.82m compared with 45.72m. The time in which 

a tank gets polluted and the effluent becomes concentrated also depends on tank depth and diameter. That is 

more when the tank depth and diameter are considered for larger sizes.        
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