

De-chlorination of drinking water by forced aeration

- 2 Ghanim Hassan¹, Robert G. J. Edyvean²
- 3 ¹Department of Water Resources Techniques, Middle Technical University, Baghdad, Iraq.
- 4 ²Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK.
- 5 Correspondence to: Dr. Ghanim Hassan (dr.ghanim@mtu.edu.iq)
- 6

7 Abstract. Shock chlorination is a well-known practice in swimming pools and domestic wells. One of the limitations 8 for using this technique in drinking water purification facilities is the difficulty of quickly removing high chlorine 9 concentrations in water distribution systems or production facilities. In order to use this method in the drinking water 10 industry a shock de-chlorination method should be introduced for producing microorganism and biocide free water. 11 De-chlorination using natural stagnant aeration (leaving the water to lose the chlorine naturally) is the safest known 12 method if compared with chemical and charcoaling methods. Unfortunately, stagnant aeration is a slow process. 13 Therefore, developing a process for accelerating de-chlorination by aeration would pave the way for using shock de-14 chlorination in drinking water industry.

15

Forced air bubbling is a possible technique for de-chlorination but there is lack of data supporting such a process. The theory is that air bubbling has the advantages of higher mass transfer area, higher Reynolds number across the bubble water interface, and higher mass transfer concentration gradient as the bubbling presents a continuous stream of fresh bubbles. All of these factors accelerate aeration to various extents.

20

A 20 cm diameter, 1-meter height column provided with air sparger was designed to collect the desired data used in
 this study. Trichloroisocyanuric acid, sodium hypochlorite and chlorine gas were the three familiar sources of chlorine
 used to investigate their response to air bubbling.

24

Chlorine gas was the fastest and safest chlorine source to be dechlorinated. It dropped from 200 ppm to 0.02 ppm
 within 4 minutes or zero ppm within 6 minutes using an air flowrate of 9 l/min.

27

Sodium hypochlorite decreased from 200 ppm to 0.02 ppm within 6 minutes using air flowrate of 9 l/min.
 Trichloroisocyanuric acid found to be the chlorine source slowest to respond to de-chlorination. It decreased from 200 ppm to 0.02 ppm within 8 minutes using an air flowrate of 9 l/min.

31

Shock de-chlorination by aeration is found to be a promising method that opens up the drinking water industry and
 could produce microorganism and biocide free drinking water.

35 1 Introduction

Chlorination of drinking water has been used as a disinfection technique for more than a century or so to produce water that is safe from waterborne diseases. This method is preferred due to low cost, abundance, ease of use and less need of high technology equipment. On the other hand, during the last forty years disinfectant by-products "DBPs" as a new branch of study in the water industry has developed first by discovering the presence of Chloroform (Rook, 1974) and trihalomethanes "THMs" (Singer, 1994) in drinking water. To date some 700 or more DBPs have been identified but understanding their effect on humans and the environment still needs more work (Brown et al., 2011;Gonsior et al., 2014;Richardson and Postigo, 2015).

Liberating the drinking water industry from chlorination side effects has been approached by developing new chemical, physical and hybrid techniques rather than novel methods such as plasma and solar disinfection (Kumar and Pandit, 2012). All of these strategies imply economical and health disadvantages which still gives disinfection by chlorine an accentable reason for use in many places around the world.

46 chlorine an acceptable reason for use in many places around the world.

One of the major advantages of chlorine is preventing bacterial regrowth if some residual level is maintained alongthe distribution system. Recently, some European water treatment factories prevented the regrowth; i.e. producing

Drinking Water Engineering and Science Discussions

biologically stable drinking water, by optimizing nutrition levels in effluent water using pretreatment techniques such
 as sedimentation, filtration, UV disinfection, ozone, and peroxide (Lautenschlager et al., 2013;Simoes and Simoes,
 2013).

52 Shock chlorination is a well-known disinfection process normally used in swimming pools, springs and wells. In all 53 these applications the water reservoir is kept without use for a certain time for natural de-chlorination. The 54 concentration of chlorine and contact time for killing all or most of the contaminants varies depending on initial and 55 desired microorganism concentration and the chemical nature of water that may interfere with the chlorination process 56 (LeChevallier et al., 1981; Virto et al., 2004; Virto et al., 2005; Helbling and Vanbriesen, 2007). The rare information 57 about time-concentration needed may be due to the wide nature of reservoirs that make any generalized study difficult. 58 Furthermore, it is easy to estimate the parameters in simple laboratory experiments. De-chlorination of water by 59 aeration is also a well-known process but it driven naturally by leaving water in an open vessel for about 24 hours. 60 This process is used mainly for domestic needs such as de-chlorinating water for fish aquariums. In such applications 61 the time is available and the amount of water is small. In such cases there is no serious need for forcing the

62 dechlorination.

63 Contemporary drinking water production and distribution systems should be as biocide and microorganism free as

64 possible without forgetting the economical aspect. The need for residual biocide for preventing regrowth is decreased 65 with the development of new techniques (Lautenschlager et al., 2013;Simoes and Simoes, 2013). Therefore, the idea

- of shock chlorinating and de-chlorinating potable water may be an acceptable approach for producing high quality
- 67 drinking water.

68 In this study the ability of pumped air for de-chlorinating drinking water was investigated. Such information is needed 69 for the process design of drinking water facilities. The information should help in calculating the dimensions and 70 operating conditions of continuous chlorination and de-chlorination equipment.

71 2 Hypothesis

72 According to Fick's law:

$$\mathbf{73} \qquad \mathbf{J} = -\mathbf{D}\frac{\partial c}{\partial x} \tag{1}$$

74 Where:

- 75 J: is the diffusion flux $\left(\frac{mole}{m^2 \cdot s}\right)$
- 76 D: is the diffusion coefficient $\left(\frac{m^2}{s}\right)$
- 77 C: is the concentration gradient $\left(\frac{mol}{m^3}\right)$
- 78 *x*: is the length vertical to m^2 in D and C above (*m*)
- 79 (Li et al., 1965) rearrange equation (1) dimensionally to get:

80
$$\frac{dn}{dt} = k_L a(dC)$$

- 81 Where:
- 82 *n*: is the moles of gas transferred (mole)
- 83 *t*: is the time (s)
- 84 k_L : is the mass transfer coefficient (m/s)
- 85 *a*: is the mass transfer area (m^2)

(2)

- Therefore, to increase the moles of chlorine transferred, both of mass transfer area (a) and the concentration gradient (dC) should be increased. Forced aeration is suggested to increase them both.
- (dC) should be increased. Forced aeration is suggested to increase them both.

88 2.1 The role of aeration in increasing the mass transfer area

- 89 Chlorine is transferred from water to air through a contact area between air and water. In stagnant aeration the chlorine
- is only transferred from the upper surface of the water. Increasing the air water interface will increase chlorine transfer
 and decrease the time to reach the desired level of dechlorination.
- 92 Consider a cube of water with dissolved chlorine of a length of (r).
- Assume that the upper face of the cube is the mass transfer area for chlorine; which equals to $A=r^2$ as happens in stagnant aeration.
- Assume also there is a spherical air bubble of radius (r) inside the cube as in figure (1A). The surface area of this bubble will be $4\pi r^2$.

97 98

Figure 1: Hypothesis graphical illustration

99 The total surface area available for mass transfer will be the sum of upper face plus the bubble surface areas ($r^2 + 4\pi r^2$). The percentage increase in surface area can be expressed as:

101 % surface area increase due to aeration =
$$\frac{New \ mass \ transfer \ area}{Original \ mass \ transfer \ area} \times 100$$

102 Or % surface area increase due to aeration =
$$\left(\frac{r^2 + 4\pi r^2}{r^2} \times 100\right) = 1357\%$$

Assume also there are 8 bubbles of a radius (0.5r) inside the cube as in figure (1B). The total percentage increase in surface area will be:

105 % surface area increase due to aeration =
$$\left(\frac{r^2 + 8(4\pi (0.5r)^2)}{r^2} \times 100\right) = 2613\%$$

Finally, assume there are 64 bubbles of radius (0.25r) inside the cube as in figure (1C). The total percentage increasein surface area will be:

108 % surface area increase due to aeration =
$$\left(\frac{r^2 + 64(4\pi (0.25r)^2)}{r^2} \times 100\right) = 5127\%$$

109 Or in general, % surface area increase due to aeration = $\frac{r^2 + x^3(4\pi(\frac{r}{x})^2)}{r_2} \times 100$

- 110 Where: x is the number of bubbles that lined adjacently along the length of cube line (r). Or it is the cubic root of the 111 bubbles inside the tubes.
- **112** Simplifying by eliminating (r) to get:
- 113 % surface area increase due to aeration = $1 + x^3 4\pi \left(\frac{1}{x}\right)^2 \times 100$
- 114 Or:

115

% surface area increase due to aeration = $(1 + 4\pi x) \times 100$

- 116 This equation is valid for fully packed water cubes with bubbles. As spaces among bubbles increases the error margin
- increases. Also it is valid for bubbles of equal volume; hence, every variation in bubble size range will also increase
- the error margin.
- 119 This equation can be represented graphically to get the plot in figure 2.

121 Figure 2: The graphical representation of the relation between the number of bubbles inside a cube and the

122

percentage increase in surface area

(Lu et al., 1999) made a set of experiments investigating the effect of the ratio of surface area to volume (S/V) of
chlorinated water on chlorine decay. They suggested that a 1500% increase in surface area will reduce chlorine level
to a value of approximately one fifth of its original level. These tests as well as the conclusion in figure 2 encourage
the use of air bubbling for dechlorination.

127 2.2 The role of aeration in increasing concentration gradient

128 When a fresh air bubble rises through chlorinated water, the chlorine is transferred from water to air bubble driven by

129 concentration gradient (dC). The bubble at the surface of the sparger has the least chlorine concentration, hence greater

130 concentration gradient.

- 131 The average velocity of a rising bubble in water column is approximately (20-30) cm/sec (Sharifullin and Luebbert, 132 2001;Chen, 2004). Therefore, the chlorine will not have that time to reach saturation in the bubble then the
- 133 concentration gradient continues to be in its maxima. The more bubble velocity the more concentration gradient.

Figure 3: Effect of surface area to volume on chlorine mass transfer rate. (Lu et al., 1998)

136 2.3 Effect of turbulence

137 The relation between Reynolds number, boundary layer thickness and mass transfer rate were intensively outlined. At
138 higher Reynolds number boundary layer thickness increases, hence lower resistance to mass transfer. The higher
139 decrease in mass transfer resistance occurs when Reynolds number jump from laminar to turbulent flow regime.
140 Therefore, many mass and heat transfer applications that need high transferability designed to aim for turbulent
141 Reynolds number such as car radiators and air conditioners (Incropera and Dewitt, 2007;Bird et al., 2007).

142 Neglecting the jet effect and turbulence resulting from air effluent the sparger, for an air bubble rising in a column by
143 buoyancy only, Reynolds number can be expressed as (Scheild et al., 1999):

- 144 Re_b= $\frac{\rho_{Lu_b d_b}}{\mu_L}$
- 145 Where:
- 146 Re_b: is Reynolds number for a bubble rising in a liquid (dimensionless).
- 147 ρ_L : is the liquid density (*kg/m³*).
- 148 d_b : is the diameter of bubble (*m*).
- 149 μ_L : liquid viscosity (*Pa.s*).

150 Values of Re_b over 500 are considered as turbulent (Lau et al., 2012). Assuming the average bubble size along the 151 column is 1 cm and the average velocity is 25 cm/s, Re_b gives the value of 2500. With this Reynolds number there is

- 152 a big leap in chlorine transfer from water to bubble when using forced aeration instead of conventional stagnant 153 aeration.
- 3. Materials and methods 154
- 155 3.1 Aeration system

156 157

Figure 4: Experimental set up

158 A compact aeration column system consists of 1 m long was designed and built. The main part is a transparent Perspex 159 (Poly (methyl methacrylate)) tube, 20 cm inside diameter. A ceramic sparger, 19 cm diameter, with 50 microns' holes 160 size is fixed 10 cm above the column base. The sparger is joined to a 15 mm diameter tube connected to a compressor 161 with a rotameter (10-900 l/min) or (0-10 l/min) depending on run demands. A 200-liter tank is installed beside the 162 system to collect distilled water from a still and provide a reservoir to the column. The working capacity of column is 163 approximately 50 liters and 63 liters when totally filled. The assembly is fixed on a steel rig (Figure 4).

164 3.2 The Chlorine

- 165 Three chlorine sources were used in this work:
- 166 1- Trichloroisocyanuric acid tablets obtained from Acti.
- 167 2- Sodium hypochlorite obtained from SIGMA-ALDRICH (assay of 10%).
- 3- Chlorine gas: This is synthesized in the lab through reaction between trichloroisocyanuric acid and hydrochloric 168 169 acid (37 M); obtained from SIGMA-ALDRICH, according the following equation:
 - $C_3Cl_3N_3O_3+3HCl \rightarrow C_3H_3N_3O_3+3Cl_2$
- 170 The produced chlorine gas is dissolved in distilled water using the system in figure 5. A peristaltic pump (Watson 171
- 172 Marlow, Model - 505S, range 2 - 220 rpm) was used for transferring chlorine gas from the reaction bottle to saturation
- 173 bottle then circulating it back to the first bottle.

174 The reaction is implemented under standard atmospheric conditions. 100 grams of trichloroisocyanuric acid tablets 175 were placed in the reaction bottle then 5 litters of distilled water were added. Then 20 ml HCl was added to the 176 mixture and left till the water turns yellow. Using more or less amounts of the chemicals is not dangerous as the 177 reaction is not fast especially with the presence of this relatively large water amount. Finally, the peristaltic pump is 178 started to transfer the released chlorine gas from reaction bottle to saturation bottle. The increase in chlorine 179 concentration in the saturation bottle can be estimated roughly by yellowish water, it is recommended to take samples 180 every short period of time (say 10 minutes) for analysis until the desired concentration is reached.

181 3.3 **Chlorine meter**

182

183 Two chlorine meters were used in this study. The first was exact®Z Obtained from Industrial Test Systems, Inc. (ITS). 184 The second was ExStik® obtained from EXTECH instruments, model number of CL200. Both meters are self-

- 185 calibrated. In addition of that they are provided with standards for external calibration.
- 186

187 188

Figure 5: Chlorine production and water chlorination system

189 3.4 pH meter

190 The pH meter used in this work obtained from AZ^{\odot} with the model number of 8685. The device was calibrated using 191 three pH standard buffer solutions of the values of 4.0, 7.0 and 10 obtained from VWR international and 192 manufactured by MERCK MILLIPORE.

193 3.5 Experimental procedure 194

- 1- Prepare 5 litters of 2000 ppm chlorine water solution in a separated bottle.
- 195 2- Fill the column with 45 liters of distilled water.
- 196 3- Add saturated chlorine solution obtained from step 1 gradually to the column with mixing to get 200 ppm.
- 197 4-Start air pumping at 1 l/min.
- 198 5-Start taking samples every 1 minute for low range or 2 minute for high range, for 30 minutes for analysis.
- 199 6-Stop air pumping and drain the system.
- 200 7-Repeat steps 1 through 6 for every new air flowrate. 8-
- 201

202 4. Results

203 Results were expressed by measuring chlorine decay in ppm as a response of pumping time in minutes and air flowrate

204 in l/min. Two ranges of air flowrates were investigated; the first was a high range (10 - 50) l/min with an interval of 205 10 l/min while the second was (1-9) l/min with an interval of 1 l/min which represented the fine tune of the first range.

206 4.1 Chlorine decay without air pumping (control)

- 207 For the control chlorinated water was put in the column with the same concentration used in the full experiments and
- 208 left to evaporate naturally. The obtained results are summarized in figure 6.

210

Figure 6: Natural stagnant aeration rate (control)

211 4.2 De-chlorination of chlorine obtained from trichloroisocyanuric acid

- 212 In this set the saturated chlorine solution in step 1 in 3.5 was prepared using trichloroisocyanuric acid (200 ppm). The
- 213 obtained results are summarized in figures 7 for low and 8 for high ranges of air flowrates.
- 214

215 4.3 De-chlorination of chlorine obtained from Sodium hypochlorite

216 In these experiments the saturated chlorine solution in step 1 in 3.5 was prepared using sodium hypochlorite (200

217 ppm). The results are summarized in figures 9 for low and 10 for high air flowrates.

218 4.4 De-chlorination of chlorine obtained from Chlorine gas

In this set the saturated chlorine solution in step 1 in 3.5 was prepared using chlorine gas prepared using the system in figure 5 and following step 3 in 3.2 (200 ppm). The obtained results are summarized in figures 11 for low range

- and 12 for high air flowrates.
- 4.5 Effect of air flow rate on mass transfer coefficient (*K*_i*a*)
- The average values of *Kla* are plotted against air flow rate. Figures 13 for low and 14 for high flowrates summarize the results.
- 225

227 Figure 7: Effect of low range air flowrate on chlorine decay when using trichloroisocyanuric acid as chlorine source

Time (min)

1.5914

235 Figure 11: Effect of low range air flowrate on chlorine decay when using chlorine gas as chlorine source

237 Figure 12: Effect of high range air flowrate on chlorine decay when using chlorine gas as chlorine source

Figure 13: Effect of air flowrate on mass transfer coefficient $K_i a$ (Low range flowrate)

241

Figure 14: Effect of air flowrate on mass transfer coefficient K_{la} (High range flowrate)

4.6 Effect of chlorination on water pH

Along all the experiments of the three chlorine sources, pH was monitored to give the results in figure 15.

246

Figure 15: pH variation in shock chlorination for the three chlorine sources

248 4.7 Shock chlorination rate

249 Results are expressed as ppm reduction for dechlorination and ppm increase for chlorination during the same time 250 intervals. Every bar is the net difference between one reading and the next one.

251 To make a fair comparison, the chlorination values near to zero ppm are compared with the dechlorination values near 252 200 ppm because at these two values the driving forces are at their maxima. Figure 16 shows the results. It is shown 253 that the chlorination is faster than dechlorination rate by an average of 25%.

Figure 16: Comparison between chlorination and dechlorination rates

256

Drinking Water Engineering and Science

257 5. Discussion

258 The main aim of this study was to investigate increasing the release of dissolved Chlorine from water by increasing 259 the mass transfer area, concentration gradient and turbulence using aeration. This hypothesis is supported and data for 260 such a process is given.

261 Chlorine is widely used in water industry. Changing this technique would cost a lot (Fawell, 2014;Powell, 2010).
 262 Therefore, it is better to keep using disinfection by chlorination and trying to avoid the disadvantages.

263 The perfect drinking water system should be, free of biological contaminants and free of chemicals, especially 264 biocides. The results show that shock chlorination and shock dechlorination by aeration can produce such water. The 265 proposed purification process aims to kill the entire microorganism load with a high dose of chlorine then removing 266 this chlorine by aeration.

The findings of this study pave the road for using shock chlorination followed by shock dechlorination for producing
high quality drinking water. Dissolved chlorine can easily be removed from water by forced aeration as it provides
three advantages on stagnant aeration. First is the significant increase in mass transfer area as shown in figure 2.
Second is the increase in mass transfer boundary layer turbulence between air bubble and bulk water. The third is the
increase in mass transfer concentration gradient along water-bubble interface.

272 In this study, three sources of chlorine were examined for their response to dechlorination by aeration. The first was 273 trichloroisocyanuric acid which is used frequently in swimming pools due to its reaction with water to produce 274 cyanuric acid which is considered as a chlorine stabilizer that prevent chlorine from volatizing that may result from 275 high surface area with respect to water mass in swimming pools (Harnvajanawong et al., 2004). The second is sodium 276 hypochlorite (bleach). It is the most used chlorine source in all applications as a result of its abundance, cheapness 277 and ease of use. The third was chlorine gas.

278 With all three chlorine sources the general trend is relatively fast chlorine removal from water but they do differ 279 slightly in removal rate, the final steady concentration and how fast they reach this steady concentration. For 280 trichloroisocyanuric acid the chlorine removal was optimum at 9 l/min of air and needed 6 minutes to reach the 281 minimum steady concentration. For the low flowrate range the results obeyed the hypothesis that assumes more air 282 pumping lead to faster chlorine removal. For the high range over 10 l/min the removal rate did not increase as a 283 response to air flowrate increase. This because of "the column effect"; that is, in a column, at high air flow rates there 284 will be a bubble "traffic jam" along the water column and bubbles increase in size as they rise. These two factors 285 drive bubbles to be adjacent to each other reducing the total surface area for mass transfer as well as losing the 286 turbulence along the bubble-water interface. Therefore, at higher air flowrates further increasing air flowrate had two 287 counteractive effects; first, is increasing the three driving forces of aeration "increasing surface area, increasing 288 turbulence, and increasing concentration gradient" while the opposite is "the column effect". The more the air flowrate, 289 the more the domination of column effect and the less chlorine transfer.

290 It was concluded that in an air-water bubbling system the column effect should not start effectively before 50 l/min (Hassan and Edyvean, 2015) but in this work it started after 10 l/min. This is because the relatively high concentrations of trichloroisocyanuric acid and sodium hypochlorite seem to work as frothers which stimulate the column effect at lower air flow

294 It was also noticed that in aerating trichloroisocyanuric acid the chlorine removal is lower when compared with sodium 295 hypochlorite and chlorine gas. Furthermore, the chlorine concentration did not reach zero even with a long aeration 296 time and stuck on 0.02 ppm. This because of the stabilizing effect of cyanuric acid that is produced from the reaction 297 of trichloroisocyanuric acid and water (Harnvajanawong et al., 2004).

298 Using trichloroisocyanuric acid in shock chlorination would give many problems and limitations. Concentration of 299 cyanuric acid, formed when trichloroisocyanuric acid is added to water, above 30 ppm leads to a phenomenon called 300 "chlorine lock" in which cyanuric acid locks the ability of chlorine to kill bacteria. hypochlorous acid is another 301 product from trichloroisocyanuric acid and water which decreases the pH to a level unacceptable for drinking water 302 (Harmwignanuong et al. 2004)

302 (Harnvajanawong et al., 2004).

303 For the sodium hypochlorite solution, the dechlorination was faster than trichloroisocyanuric acid rather than the 304 ability for reaching zero chlorine level. It seems that the acidic pH; not the presence of cyanuric acid alone hinders the 305 dechlorination.

306 Shock chlorination using trichloroisocyanuric acid and sodium hypochlorite is known in the treatment of swimming 307 pools and domestic wells. Using either of them is not a recommended practice in drinking water production for many 308 reasons. First, is because of corrosion, especially when the construction material is cast iron. Second, is the difficulty 309 of lowering chlorine level across the distribution system naturally. Third, there will be reaction residuals lead to a 310 significant unacceptable effect on water pH away from the neutral value of 7. Therefore, using chlorine gas is the 311 recommended method for shock chlorination and shock dechlorination because there will be no residual chemicals 312 after the dechlorination.

313 Chlorination by chlorine gas is usually implemented by injecting it through water pipes. For shock chlorination this is 314 not enough even though chlorination with chlorine gas is known to be fast. Also, releasing high doses of chlorine to 315 the air through the shock dechlorination process implies a high health risk on the people that may live near water 316 treatment facilities. Therefore, a new design for recycling chlorine in shock chlorination equipment is needed. Figure

317 5 gives a preliminary idea for such design.

318 Chlorine is very corrosive substance; so it should be fully controlled to prevent the decay of the distribution system. 319 On the other hand, Chlorine level in treatment and distribution facilities should be kept acceptable. Mostly, water 320 distribution systems are made of three well-known construction materials; cast iron, concrete, and plastic. For cast 321 iron chlorine is not recommended. Concrete and plastic are less affected by corrosion (Al-Jasser, 2007). Therefore, 322 minimizing the chlorine level in water distribution system is another advantage for dechlorination.

323 Using bubble aeration has the advantage over stagnant aeration due to three physical phenomena. First is higher mass 324 transfer area. The second is higher Reynolds number through the mass transfer interface, the third is a higher mass 325 transfer concentration gradient; that is, the bubble is rising fast through the water column which leads to shorter time 326 to mass transfer then there is a higher concentration gradient. Smaller bubbles have larger mass transfer area; less 327 Reynolds number and less concentration gradient as they climb up slowly through the water column which makes 328 them to collect more chlorine inside hence there is less concentration difference between the bubble and the bulk 329 water. However, the comparison between small or large bubbles is a tradeoff and needs further investigation.

330 pH was monitored against chlorine removal for each chlorine source. For trichloroisosyanuric acid at 200 ppm chlorine 331 the pH was acidic at 5.76. as chlorine was withdrawn by aeration the pH decreased till reaching 7.13 at 1.32 ppm 332 chlorine. For sodium hypochlorite at 200 ppm the pH was 7.97 then went down 7.5 at final chlorine concentration of 333 0.68 ppm. For chlorine gas at 200 ppm pH was 7.58 then dropped down to 7.05 when the chlorine concentration 334 became 0.17. The reason behind these trends is that the continuous withdrawal of chlorine from the system leads to 335 continuous withdrawal of hypochlorous acid; hence, decreasing the acidity of the water.

336 The pH results give important limitations that should be considered when selecting a shock chlorinator. Using 337 trichloroisosyanuric acid will produce high residual of syanuric acid which raises water acidity to unacceptable levels. 338 The same is for sodium hypochlorite but is less marked and in basic direction. Sodium is also a side product of water 339 dechlorination by sodium hypochlorite but its health effect is not that dangerous as stoichiometrically the produced 340 sodium when using 200 ppm sodium hydroxide is approximately 131 ppm. Sodium is an essential component in 341 mineral water, so this sodium concentration may still acceptable. Chlorine gas is the best for use in such application 342 as its chlorination and dechlorination is nearly completely reversible.

343 Practically, when low chlorine concentration is needed for shock chlorination; say less than 30 ppm, the preferred 344 chlorinator is sodium hypochlorite because of its affordable effect on water pH. For higher chlorine levels chlorine 345 gas would be recommended but with some modifications in chlorination facilities.

Mass transfer coefficient is a direct reflection to the chlorine depletion rate in water. The faster the decrease of chlorine ppm the greater the mass transfer coefficient is. When plotting the term $ln \frac{(C^*-C)}{(C^*-C_{\circ})}$ against the time, the slope represents 346

347

348 the value of K_{ia} . The sign of K_{ia} was negative in all points which indicate that the process represents dissolved gas 349 depletion from water to gas bubble.

 K_{la} values are necessary for design purposes. Therefore, they should approach the reality not the values predicted by mathematics. That is, the first few points have fast chlorine decrease hence more vertical slopes while the many others have slow decrease hence more horizontal slopes. When taking the average of these slopes, the average will show horizontality which is much away from design reality and will cause an unfair or magnified equipment. To deal with

that, the average slope for the range from 200 ppm to nearly 1 ppm was taken into account as this range represents the

most reliable chlorine depletion rate. Within this range equipment will designed well and economically.

356 It is clearly noticed that K_{la} values are very high at higher air flowrates. This is a direct result of the increase of mass 357 transfer area that resulting from higher number of bubbles per certain time period and water volume.

358 K_{la} values for low range air flowrates (1-9 l/min) shows an increase with respect to air flowrate for all the three **359** chlorine sources. This is due to the parallel increase in mass transfer area that resulting from the increase of bubbles **360** per unit volume and time. After that, when reaching 10 l/min bubbles come to be crowded inside the column and; in **361** majority of cases, attached to each other. This attachment reducing the overall mass transfer area as bubbles will not **362** be longer exposed to water. Over the range of 10 to 50 l/min K_{la} shows nearly constant values because there will be a **363** counteractive effect between increasing the air flowrate and decreasing the mass transfer area resulting from bubble **364** crowd.

The variation of K_{la} ($K_l \times a$) or (mass transfer coefficient multiplied by the mass transfer area), is a direct result of varying the mass transfer area alone. K₁ is nearly constant at the same other variables such as pressure and temperature.

367 Every value in figures 13 and 14 is the mean of many K_{ia} values with respect to chlorine concentration. K_{ia} increases 368 as the starting chlorine concentration increases. This because the term $(C^* - C)$; the transferred moles, is increasing 369 also.

370 It is clear that chlorination is faster than dechlorination by an average of 25 %. The explanation behind this can be 371 illustrated by the comparison between chlorine and air bubbles rising in water. When a chlorine bubble rises in water 372 column, the gas that transfers across the bubble-water interface is only the chlorine. On the other hand, when an air 373 bubble is rising along the water column, the transferred gasses across the interface are chlorine and water vapor.

374 The solubility of a gas in liquid and the counter action of the release of a gas from the liquid under the same conditions 375 is governed by mass transfer rate. This depends mainly on the concentration gradient. In the chlorination process the 376 concentration gradient continues to be the maximum level from the bottom to the top of the column while in 377 dechlorination it starts at the maxima and decreases as it rises up. However, in chlorination the lower the concentration 378 of chlorine in water the higher the chlorine transfer rate as a result of higher concentration gradient while for 379 dechlorination process the higher the concentration in the water the higher the transfer rate for the same reason.

380 The findings of this set assumes that as the chlorination is faster than dechlorination by a factor of 25%, hence, the 381 "air/water demand per ppm of chlorine reduction" should be reduced by the same percentage.

382 After chlorination the chlorinated water should reside in the column for a short time to kill the bacteria. Approximate calculations indicate that, at a chlorine level of 200 ppm, the contact time should be about 11 seconds (Wagnet et al., 2005). These calculations are proposed to work under moderate or low bacterial load and chlorine concentrations. Generalizing these figures for high chlorine levels is not fully recommended but can give a preliminary indication. Furthermore, such calculations are not for a complete kill of all the microorganisms but for a reduction to certain cfu/ml according to industrial bio-purification demands. Therefore, in designing a chlorination unit both chlorination and contact time have to be addressed.

389 For the low chlorine concentrations that are conventionally used in treatment processes, the dissolution time is not important as it takes little time to rise from zero to 4 ppm. However, for shock chlorination, chlorine has to rise from zero to 200 ppm. This time should be kept in mind in design calculations.

392 For design purposes, the chlorination unit dimensions can be assumed to be the same as dechlorination. This 393 assumption depends on the fact that if dechlorination takes 2 minutes, the chlorination should take one minute and 30 394 seconds (dechlorination takes 25% more the time of chlorination) this gives 30 seconds to kill all the bacteria. If more 395 time is needed to do so, it should be taken into account.

Drinking Water Engineering and Science Discussions

404

396 6. Conclusions

- 397 Forced aeration is a promising technique that can be used for removing chlorine in a fast and safe way in drinking 398 water industry. This would enable shock chlorination followed by shock dechlorination to produce microorganism 399 and biocide free drinking water. Chlorine gas was found to be the fastest and cleanest chlorine source to response to
- 400 dechlorination by aeration followed by sodium hypochlorite and trichloroisosyanuric acid respectively.
- 401 On average, chlorination is faster than dechlorination by 25%. This gives a good tolerance and enough idea about the
- 402 dimensions of a chlorination unit. The design of a chlorination unit is not that different from a dechlorination unit. As
- 403 a rule of thumb, they can be the same.

References

- Al-Jasser, A. O.: Chlorine decay in drinking-water transmission and distribution systems: pipe service age effect,
 Water research, 41, 387–396, 2007.
- 407 Bird, R. B., Stewart, W. E., and Lightfoot, E. N.: Transport Phenomena, John Wiley & Sons, Inc. USA, 2007.
- Brown, D., Bridgeman, J., and West, J.: Predicting chlorine decay and THM formation in water supply systems, Rev
 Environ Sci Biotechnol, 10, 79-99, 10.1007/s11157-011-9229-8, 2011.
- Chen, P.: Modeling the fluid dynamics of bubble column flows, PhD, Department of Chemical Engineering,
 Washington University, Washington, USA, 2004.
- Fawell, J.: "Managing Uncertainty in the Provision of Safe Drinking Water", DBP 2014: Disinfection By-products in drinking water, Mulheim, Germany, 2014.
- 414 Gonsior, M., Schmitt-Kopplin, P., Stavklint, H., Richardson, S. D., Hertkorn, N., and Bastviken, D.: Changes in
- 415 dissolved organic matter during the treatment processes of a drinking water plant in sweden and formation of
- **416** previously unknown disinfection byproducts, Environ Sci Technol, 48, 12714-12722, 10.1021/es504349p, 2014.
- 417 Harnvajanawong, N., Thongkon, N., Ungchusuk, C., and Ramsomphob, W.: "Effect of Trichloroisocyanuric Acid
- 418 Disinfectant Filled in Swimming Pool Water", The Joint International Conference on "Sustainable Energy and
 419 Environment (SEE), Hua Hin, Thailand, 2004.
- Helbling, D. E., and Vanbriesen, J. M.: Free chlorine demand and cell survival of microbial suspensions, Water Res,
 41, 4424-4434, 10.1016/j.watres.2007.06.006, 2007.
- 422 Incropera, F. P., and Dewitt, D. P.: Fundamentals of heat and mass transfer, John Wiley & Sons, Inc, USA, 2007.
- 423 Kumar, J. K., and Pandit, A. B.: Drinking water disinfection techniques, CRC Press, USA, 2012.
- Lau, R., Lee, P. H. V., and Chen, T.: Mass transfer studies in shallow bubble column reactors, Chemical Engineering
 and Processing: Process Intensification, 62, 18-25, <u>http://dx.doi.org/10.1016/j.cep.2012.10.003</u>, 2012.
- Lautenschlager, K., Hwang, C., Liu, W. T., Boon, N., Koster, O., Vrouwenvelder, H., Egli, T., and Hammes, F.: A
 microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution
- 428 networks, Water Res, 47, 3015-3025, 10.1016/j.watres.2013.03.002, 2013.
- 429 LeChevallier, M. W., Evans, T. M., and Seidler, R. J.: Effect of turbidity on chlorination efficiency and bacterial
 430 persistence in drinking water, Applied and Environmental Microbiology, 42, 159-167, 1981.
- Lu, W., Kiéné, L., and Lévi, Y.: Chlorine demand of biofilms in water distribution systems, Water Research, 33, 827835, <u>http://dx.doi.org/10.1016/S0043-1354(98)00229-2</u>, 1999.
- 433 Powell, S. C.: The active species in drinking water chlorination: the case for Cl2O, Environmental Science and434 Technology 3203, 2010.
- 435 Richardson, S. D., and Postigo, C.: CHAPTER 1: The Next Generation of Drinking Water Disinfection By-Products:
- 436 Occurrence, Formation, Toxicity, and New Links with Human Epidemiology, in: Disinfection By-products in
 437 Drinking Water, The Royal Society of Chemistry, 1-13, 2015.
- 438 Rook, J. J.: Formation of Haloforms during Chlorination of natural Waters, Water Treat. Exam., 23, 234-243, 1974.
- 439 Scheild, C. M., PUGET, F. P., HALASZ, M. R. T., and MASSARANI, G.: Fluid dynamics of bubbles in liquid,
 440 Brazilian Journal of Chemical Engineering, 16, 351-358, 1999.
- Sharifullin, V. N., and Luebbert, A.: Adsorption Processes and the Velocity of a Bubble Rising in the Presence of
 Surfactants, Theoretical Foundations of Chemical Engineering, 35, 357-360, 10.1023/A:1010470919069, 2001.
- 442 Suffactants, incorrectar Foundations of Chernical Engineering, 53, 53, 50, 10, 1023, A, 10104, 10919, 2001.
- Simoes, L. C., and Simoes, M.: Biofilms in drinking water: problems and solutions, RSC Advances, 2013, 3, 2520,
 2520-2533, 2013.
- 445 Singer, P. C.: Control of Disinfection By-Products in Drinking Water, Journal of Environmental Engineering, 120,
- 446 727-744, doi:10.1061/(ASCE)0733-9372(1994)120:4(727), 1994.

- 447 Virto, R., Sanz, D., Alvarez, I., Condon, S., and Raso, J.: Relationship between inactivation kinetics of a Listeria
- monocytogenes suspension by chlorine and its chlorine demand, J Appl Microbiol, 97, 1281-1288, 10.1111/j.1365 2672.2004.02414.x, 2004.
- 450 Virto, R., Sanz, D., ÁLvarez, I., Condon, S., and Raso, J.: Modeling the effect of initial concentration of escherichia
- 451 coli suspensions on their inactivation by chlorine, Journal of Food Safety, 25, 120-129, 10.1111/j.1745-
- **452** 4565.2005.00566.x, 2005.
- 453 Wagnet, L., Annelies Heidekamp, and Lemely, A.: "Chlorination of drinking water", Ithaca, NY, USA, 2005.

454

455