

Interactive comment on "The Ability of Froth Formed without Chemicals to Hold Bacteria" by Ghanim Hassan and Robert G. J. Edyvean

Ghanim Hassan and Robert G. J. Edyvean

dr.ghanim@mtu.edu.iq

Received and published: 13 February 2019

Most of the comments were being taken into revision. Again, I suffered a lot as the line numbers did not indicate the relevant comments but I did my best. If there are any further comments, please let me know.

Interactive comment on Drink. Water Eng. Sci. Discuss., https://doi.org/10.5194/dwes-2018-27, 2019.

C1

1 2	The Ability of Froth Formed without Chemicals to Hold Bacteria
3	Dr. Ghanim Hassan*, Department of Water Resources Techniques, Middle Technical University, Baghdad, Iraq, dr.ghanim@mtu.edu.iq
5	Dr. Robert G. J. Edyvean, Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK, r.edyvean@sheffield.ac.uk.
7	
8	Key wards: Froth flotation, Bacterial Bio-purification, Drinking water
10	Abstract
11	Froth flotation is a solid-liquid separation technique that uses hydrophobicity as a driving force.
12	Bacteria and other drinking water microorganisms tend to be hydrophobic and can be removed
13	from water using this application. The biggest limitation against using froth flotation in the
14	drinking water industry is the difficulty of producing froth without chemical "frothers" and holding
15	bacteria in this froth without chemical collectors which deteriorate water taste and odor. Recently,
16	researchers at the University of Sheffield described a method for producing froth using only water
17	and compressed air (Hassan, 2015). This has enabled froth flotation to be studied as an alternative
18	to biocides for the removal of bacteria from drinking water.
19	This work examines the ability of froth, produced by controlling air pumping through a water
20	column, to hold bacteria. Bacteria are moved to the top of the column and collected in the froth.
21	The operating conditions determine the percentage of bacteria removed.
22	At optimum conditions, froth can hold up to 2×10^8 cfu/ml of bacteria. It has been found that air
23	pumping at 130 l/min in a 20 cm diameter column will give the highest froth bacterial content.
24	Time to reach stable froth bacterial concentration is decreased by increasing other variables.
25 26	Correspondence Author: Dr. Ghanim Hassan, dr.ghanim @mtu.edu.iq, 00964-7704335364.

Fig. 1.