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Abstract 14 

In this study, fuzzy analytic hierarchy process (AHP) is used to study the relationship between drinking 15 

water quality and landform classes in south of Firozabad, east of Fars province, Iran. For determination 16 

of drinking water quality, parameters of calcium (Ca), chlorine (Cl), magnesium (Mg), thorium (TH), 17 

sodium (Na), electrical conductivity (EC), sulfate (So4) and total dissolved solids (TDS) were used. It 18 

was found that 8.29% of the study area have low water quality; 64.01%, moderate; 23.33%, high; and 19 

very high, 4.38%. Areas with suitable drinking water quality are located in parts of the southeast and 20 

southwest parts of the study area. The relationship between landform class and drinking water quality 21 

show that drinking water quality is high in the stream, valleys, upland drainages and local ridge classes, 22 

and low in the plain small and midslope classes. In fact we can predict water quality using extraction of 23 

landform class from DEM by TPI method. So that stream, valleys, upland drainages and local ridge 24 

classes have more water quality than the other classes. In the study determined that without measurement 25 

of water sample characteristics, can determine water quality by landform classes.  26 

Keywords: Drinking water quality, fuzzy AHP method, GIS, landform, south of Firozabad. 27 

 28 

1. Introduction 29 

Landform characteristics can affect the direction of water movement and water quality. Hence, in the 30 

different landforms, there is different water quality (Bise, 2013). To this end, studies on the relationship 31 

between landform classes and water quality have received significant attention. For example, William et 32 

al. (2007) investigated runoff and water quality from three soil landform units on mancos shale. A survey 33 

of sediment basins in steep, dissected shale up lands indicated that an average of 1.25 Mg/ha/year of 34 

sediment is produced by that landform unit carefully designed and located basin plugs can be used 35 

effectively to trap sediment, water, and salt from dissected shale uplands. Mehdi et al. (2012) determined 36 

agricultural land use scenarios for modelling future water quality. The results showed that there is 37 

relationship between types of land use and water quality. The impact of land use on water quality was 38 

evaluated by Huang et al. (2013). The results indicated that there was significant negative correlation 39 

between forest land and grassland and the water pollution, and the built-up area had negative impacts on 40 

the water quality, while the influence of the cultivated land on the water quality was very complex. 41 

http://www.barnesandnoble.com/s/%22Christopher%20J.%20Bise%22?Ntk=P_key_Contributor_List&Ns=P_Sales_Rank&Ntx=mode+matchall
http://www.hindawi.com/35127021/


3 
 

 42 

In addition, different algorithms have been employed for the determination of water quality. Yonas (2012) 43 

developed a complementary modeling framework to handle systematic error in physically based 44 

groundwater flow model applications that used data-driven models of the errors during the calibration 45 

phase. The effectiveness of four error-correcting data-driven models, namely, artificial neural networks 46 

(ANN), support vector machines (SVM), decision trees (DT) and instance based weighting (IBW) was 47 

examined for forecasting head prediction errors, and subsequently updating the head predictions at 48 

existing and proposed observation wells. Rule based modeling (Manoucher, 2010) was used for spatial 49 

prediction of groundwater quality in Beaufort West, in the Karoo region of South Africa. The 50 

groundwater quality data from about 100 bore wells with a 30 years span collected between 1970 and 51 

2007 was used. The variables used in the analyses included chemicals such as chloride, sulphate, 52 

magnesium, sodium, phosphates and calcium. These were used as predictors for groundwater quality and 53 

electrical conductivity. Aliabadi and Soltanifard (2014) used fuzzy inference for determination of impact 54 

of water and soil electrical conductivity and calcium carbonate on wheat crop using. The inference 55 

system estimated the performance using soil EC, water EC and calcium carbonate in the soil as input 56 

parameters, and also analyzed them.  57 

 58 

The aim of this study is the determination of the relationship between landform classes and drinking water 59 

quality in south Firozabad, Iran. In this study, drinking water quality is evaluated using parameters of 60 

calcium (Ca), chlorine (Cl), magnesium (Mg), thorium (TH), sodium (Na), electrical conductivity (EC), 61 

sulfate (So4) and total dissolved solids (TDS). According to each of factors for evaluation of water 62 

quality have different units (fuzzy method), for preparing water quality map from factors (AHP) and 63 

investigation spatial (GIS) water quality in the study, it is proposed that the most appropriate method 64 

to prepare drinking water quality maps is fuzzy analytic hierarchy process (AHP method) in a 65 

geographic information system (GIS) environment. It is expected that the determination of the 66 

relationship between landform classes and drinking water quality will allow for the prediction of 67 

drinking water quality based on landform classes. So that in the study determined that without 68 

measurement of water sample characteristics using DEM and extraction landform classes by TPI method 69 

can determine water quality by landform classes. 70 

The methodology employed in this study is summarized in Figure 1. 71 

 72 
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73 
Figure 1. Flowchart for the methodology used in this study to determine the relationship between drinking 74 

water quality and landform classes. 75 

 76 

 2. Material and method 77 

2.1. Case study 78 

This study was carried out in south of Firozabad, east of Fars Province, Iran. It has an area of 722.91 km2, 79 

and is located between longitude of N 28° 36΄- 28° 57  ́and latitude  of E 52° 16  ́to 52° 46΄ (Figure 2). 80 

The altitude of the study area ranges from the lowest of 1,134 m to the highest of 2,885 m. The study area 81 

is abundantly watered by springs and the perennial Firozabad river. The main agricultural produce 82 

consists of grain, fruit, and vegetables, while the partly wooded mountains are used for pasture (Ebn al-83 

Balḵr, 1912; Sharifi-Rad, 2014). The assessment of land suitability for agricultural production in the 84 

region is vital, which should consider environmental factors and human conditions.  85 
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 86 

Figure 2. Location of the study area (digital elevation model (DEM) with spatial resolution of 30 m) 87 

(Source: http://earthexplorer.usgs.gov). 88 

  89 

One of these important factors is drinking water quality in the study area. In order to predict the 90 

variability of drinking water quality, calcium (Ca), chlorine (Cl), magnesium (Mg), thorium (TH), 91 

sodium (Na), electrical conductivity (EC), sulfate (So4), total dissolved solids (TDS) were prepared 92 

(Table 1) (Fars Regional Water Authority).  93 

Table 1. Descriptive statistics of the parameters for evaluation of water quality (Fars Regional Water 94 

Authority). 95 

Parameters Unit  Minimum  Maximum  mean Stdv dev. 

Calcium (Ca) mg/l 0 596 195 89 

Chlorine (Cl) mg/l 25 437 84 45 

Sodium (Na) mg/l 0 458 51 45 

Electrical, 

conductivity (EC) 

ds/m 0.39 1.75 0.71 0.15 

Magnesium (Mg) mg/l 0 569 182 80 

Sulfate (So4) mg/l 0 584 137 73 

Thorium (TH) mg/l 0 473 180 77 

Total Dissolved 

Solids (TDS) 

mg/l 0 954 295 117 

 96 
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2.2. Ordinary Kriging (OK)  97 

The input parameters for determination of drinking water quality are Ca, Cl, Mg, TH, Na, EC, So4 and TDS. 98 

Interpolation maps of these parameters are prepared using ordinary kriging (OK). The presence of a spatial 99 

structure where observations close to each other are more alike than those that are far apart (spatial 100  

autocorrelation) is a prerequisite to the application of geostatistics (Goovaerts, 1999). The experimental 101  

variogram measures the average degree of dissimilarity between unsampled values and a nearby data 102  

value, and thus, can depict autocorrelation at various distances. The value of the experimental variogram 103  

for a separation distance of h (referred to as the lag) is half the average squared difference between the 104  

value at z(xi) and the value at z (xi + h): (Oliver, 1990): 105  

 106  

        (1) 107  

 108  

where N is the number of pairs of sample points z (xi) and z(xi+h) separated by distance h and (h) is the 109  

semivariogram. From the analysis of the experimental variogram, a suitable model is then fitted, usually 110  

by weighted least squares and four parameters; sill, range, nugget and anisotropy. Sill refers to the 111  

variance value at which the curve reaches the plateau sill. The total separation distance from the lowest 112  

variance to the sill is known as range. Semivariogram modeling is a key step between spatial description 113  

and spatial prediction. The main application of kriging is the prediction of attribute values at unsampled 114  

locations. There are several models for semivariogram graphs. Figure 3 shows the general shapes and 115  

equations of the mathematical models used to describe the semivariance (McBratney and Webster, 1986). 116  

 117  

 

(a) 
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(b) 

 

(c) 

 

(d) 

Figure 3. Semivariogram graphs: (a) Spherical  (b) Circular  (c) Exponential  (d) Gaussian 118  

 119  

In order to compare, the different interpolation techniques, we examined the difference between known 120  

and predicted data using root mean squared error (RMSE) (Eq. (2)) 121  

         (2) 122  

 123  

where (xi) is the predicted value, z(xi) is the observed (known) value, and N is the number of values in 124  

the dataset (Johnston et al., 2001). 125  

 126  
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2.3 Fuzzy AHP  127  

Fuzzy classification 128  

Fuzzy logic was initially developed by Zadeh (1965) as a generalization of classic logic. He defined a 129  

fuzzy set by memberships function from properties of objects. A membership function assigns to each 130  

object a grade ranging between 0 and 1 .The value 0 means that x is not a member of the fuzzy set, while 131  

the value 1 means that x is a full member of the fuzzy set. Traditionally, thematic maps represent discrete 132  

attributes based on Boolean memberships, such as polygons, lines and points. Mathematically, a fuzzy set 133  

can be defined as following (Mc Bratney and Odeh, 1997):  134  

         (3) 135  

where μA is the membership function (MF) that defines the grade of membership of x in fuzzy set A. MF 136  

takes values between and including 1 and 0 for all A, with μA =0 meaning that x does not belong to A and 137  

μA=1 meaning that it belongs completely to A. Alternatively, 0< μA(x) <1 implies that x belongs in a 138  

certain degree to A. If X={x1,x2,….,xn} the previous equation can be written as following (McBratney and 139  

Odeh, 1997): 140  

)]}(,[......)](,[)](,{[ 2211 nAnAA xxxxxxA          (4) 141  

In simple terms, Equations (3) and (4) mean that for every x that belongs to the set X, there is a 142  

membership function that describes the degree of ownership of x in A. 143  

 144  

The development of GIS has contributed to facilitate the mapping of drinking water quality using both 145  

Boolean and fuzzy methods. For each of parameters, the following function was used (Shobha et al., 146  

2013): 147  
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)()(          (5) 148  

In order to define the fuzzy rules, the drinking water quality standards in Table 2 were used. 149  

 150  

 151  

 152  

153  
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 154  

Table 2. Drinking water quality standards (WHO) (Shobha et al., 2013) 155  

Parameters  
Permissible limit 

(mg/liter( 

Calcium (Ca) 200 
Chlorine (Cl) 200 

Magnesium (Mg) 150 
Thorium (TH) 500 
Sodium (Na) 200 

Electrical 
conductivity (EC) 

3000 

Sulfate (So4) 200 
Total Dissolved 

Solids (TDS) 
500 

Analytic hierarchy process (AHP) 156  

AHP is a structured technique for organizing and analyzing complex decisions. This method is based on a 157  

pair-wise comparison matrix. The matrix is called consistent if the transitivity (Equation (6)) and 158  

reciprocity (Equation (7)) rules are respected: 159  

 160  

aij = aik · akj            (6) 161  

a ij= 1/ a ji           (7) 162  

 163  

where i, j and k are any alternatives of the matrix.  164  

 165  

In a consistent matrix (Equation (8)), all the comparisons aij obey the equality aij= pi/pj , where pi is the 166  

priority of the alternative i. When the matrix contains inconsistencies, two approaches can be applied: 167  

nnjnn
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/.../.../
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/...1.../

.........1...

/.../.../

1

1

1111

        (8) 168  

In this method, pair-wise comparisons are considered as input, while relative weights are considered as 169  

outputs. The average of each row of the pair-wise comparison matrix is calculated and these average 170  

values indicate relative weights of compared criteria. 171  

https://en.wikipedia.org/wiki/Analytic_hierarchy_process
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Drinking water 
parameters

Fuzzy map for each 
parameters

fuzzy drinking water 
quality map

Fuzzy logic

AHP

Combination of fuzzy and AHP methods 172  

Finally, in order to prepare the drinking water quality map, it is necessary to calculate the convex 173  

combination of the raster values containing the different fuzzy parameters (Bijanzadeh and Mokarram, 174  

2013; Mahdavi et al., 2015). A1, … Ak are fuzzy subclasses of the defined universe of objects X, and W1, 175  

… Wk are non-negative weights summing up to unity. The convex combination of A1, … Ak is a fuzzy 176  

class A (Burrough, 1989), and the weights W1, … Wk are calculated using AHP and fuzzy method 177  

parameters that have been calculated in ArcGIS. Equations 9 and 10 show the convex combination. 178  

  XxW
k

j

xAjA  



1

        (9) 179  

01
1




j

k

j

j WW         (10) 180  

The Fuzzy AHP approach in this study has been divided into five stages, which are summarized in Figure 181  

4. 182  

 183  

 184  

 185  

 186  

 187  

 188  

 189  

 190  

Figure 4. Fuzzy AHP procedure for drinking water quality. 191  

 192  

All the model parameters maps are constructed by interpolation between 50 sampling points using the 193  

kriging method. Next, fuzzy logic is applied to create a fuzzy parameter map for each parameter. To 194  

arrive at an integrated evaluation using drinking water quality classes, the fuzzy parameter maps were 195  

aggregated into a drinking water quality map following a weighted summation using AHP.  196  

197  
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 198  

2.4. Landform Classification Using Topographic Position Index (TPI) 199  

TPI (Weiss, 2006) compares the elevation of each cell in a DEM to the mean elevation of a specified 200  

neighborhood around that cell. Positive and negative TPI values represent locations that are higher and lower 201  

than the average of their surroundings respectively. TPI values near zero are either flat areas (where the slope 202  

is near zero) or areas of constant slope (where the slope of the point is significantly greater than zero) (Weiss 203  

2006). 204  

TPI (Eq. (11)) compares the elevation of each cell in a DEM to the mean elevation of a specified 205  

neighborhood around that cell. Mean elevation is subtracted from the elevation value at the center (Weiss 206  

2006): 207  

         (11) 208  

where; 209  

= elevation of the model point under evaluation 210  

= elevation of grid 211  

n= the total number of surrounding points employed in the evaluation. 212  

 213  

Combining TPI at small and large scales allows a variety of nested landforms to be distinguished Table 3.  214  

 215  

Table 3. Landform classification based on TPI .(Source: Weiss 2006) 216  

Classes Description 

Canyons, deeply incised streams Small Neighborhood:To≤ -1 

Large Neighborhood:To≤ -1 

Midslope drainages, shallow valleys Small Neighborhood:To≤ -1 

Large Neighborhood: -1 <To< 1 

upland drainages, headwaters Small Neighborhood:To≤ -1 

Large Neighborhood:To≥ 1 

U-shaped valleys Small Neighborhood: -1 <To< 1 

Large Neighborhood:To≤ -1 

Plains small Neighborhood: -1 <To< 1 

Large Neighborhood: -1 <To< 1 

Slope ≤ 5° 

Open slopes Small Neighborhood: -1 <To< 1 

Large Neighborhood: -1 <To< 1 
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Slope > 5° 

Upper slopes, mesas Small Neighborhood: -1 <To< 1 

Large Neighborhood:To≥ 1 

Local ridges/hills in valleys Small Neighborhood:To≥ 1 

Large Neighborhood:To≤ -1 

Midslope ridges, small hills in plains Small Neighborhood:To≥ 1 

Large Neighborhood: -1 <To< 1 

Mountain tops, high ridges Small Neighborhood:To≥ 1 

Large Neighborhood:To≥ 1 

 217  

4. Results and Discussion 218  

4.1. Geostatistical analysis 219  

OK was used for the prediction of the drinking water quality parameters (TH, Ca, Mg, Cl, Na, EC, So4 220  

and TDS). In OK, in order to select the best method (Circular, Spherical, Exponential and Gaussian), 221  

measured nugget, partial sill and RMSE were used (Table 4). The RMSE of water parameters from Table 222  

4 shows that the lowest RMSE is the Gaussian method. Furthermore, these results indicate that the 223  

Gaussian model for OK is the best semivariogram model to show the strong spatial dependency for the 224  

water variable. 225  

Table 4. Sampling nugget, partial sill and RMSE of the different interpolated methods for predicted 226  

drinking water quality using MLR. 227  

Methods Model Parameter  Nugget Partial Sill RMSE 

OK  

Circular 

TDS 0.66 0.32 0.80 

TH 0.7 0.229 0.80 
Ca 0.71 0.20 0.92 
Mg  0.70 0.36 0.61 
Na  0.63 0.45 0.90 
Cl  0.57 0.38 0.77 

So4  0.62 0.29 0.91 
EC 0.57 0.26 0.56 

 Parameter  Nugget Partial Sill RMSE 

Spherical  

TDS 0.67 0.32 0.80 
TH 0.69 0.30 0.81 
Ca 0.72 0.20 0.92 
Mg  0.70 0.37 0.61 

Na  0.63 0.44 0.90 
Cl  0.57 0.37 0.77 

So4  0.62 0.30 0.91 
EC 0.55 0.28 0.56 

 Parameter  Nugget Partial Sill RMSE 
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Exponential  TDS 0.62 0.32 0.81 
TH 0.63 0.37 0.82 
Ca 0.70 0.20 0.93 
Mg  0.69 0.36 0.62 

Na  0.63 0.45 0.91 
Cl  0.55 0.35 0.78 

So4  0.56 0.36 0.92 
EC 0.44 0.39 0.62 

 Parameter  Nugget Partial Sill RMSE 

Gaussian  

TDS 0.67 0.32 0.79 
TH 0.73 0.27 0.80 
Ca 0.71 0.21 0.91 
Mg  0.71 0.36 0.60 
Na  0.64 0.45 0.90 
Cl  0.57 0.39 0.76 

So4  0.66 0.26 0.89 

EC 0.57 0.26 0.53 
 228  

Each of water parameters map that was predicted by OK is shown in Figure 5. The lowest So4, TDS, Na, 229  

Mg, TH and Ca were 0, while the highest values for the parameters were 589, 954, 458, 569, 473 and 569 230  

mg/l respectively. The lowest values for EC and Cl were 0.39 and 25 mg/l respectively, while the highest 231  

were 1.7 and 437 respectively. In the total, the results showed that expect for Ca and Mg, the other 232  

parameters had high values in the study area. 233  

 234  

  

TH Ca  
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So4 TDS 

Figure 5. Interpolated maps of the drinking water quality parameters generated using by OK. 235  

 236  

4.2. Fuzzy method 237  

The fuzzy maps prepared for the drinking water quality parameters are shown in Figure 6,  where MF is 238  

closer to 0 with decreasing drinking water quality, while MF is closer to 1 with increasing drinking water 239  

quality (Soroush et al., 2011).  Next, the AHP method was applied on the fuzzy parameter maps. The 240  

pair-wise comparison matrix used for preparation of the weights for each parameter in AHP are given in 241  

Table 5. The drinking water quality map generated using fuzzy-AHP is shown in Figure 7. 242  

 243  

  
TH Ca  
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Mg  Cl  

  
Na  EC 

  
So4 TDS 

Figure 6. Fuzzy maps of study area for the drinking water quality parameters. 244  
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Table 5. Pair-wise comparison matrix for drinking water quality. 245  

parameters Ca Cl  Na  EC Mg  So4 TH TDS Weight    

Ca 1 2 3 4 5 6 7 8 0.33 

Cl  0.5 1 2 3 4 5 6 7 0.23 

Na  0.33 0.5 1 2 3 4 5 6 0.16 

EC 0.25 0.33 0.5 1 2 3 4 5 0.11 

Mg  0.2 0.2 0.33 0.5 1 2 3 4 0.07 

So4 0.16 0.16 0.2 0.33 0.5 1 2 3 0.05 

TH 0.14 0.14 0.16 0.2 0.33 0.5 1 2 0.03 

TDS 0.12 0.12 0.14 0.16 0.2 0.33 0.5 1 0.02 

 246  

 247  

Figure 7. Drinking water quality map generated using fuzzy AHP. 248  

 249  

250  
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 251  

The drinking water quality map is classified into four classes (Mokarram et al., 2010; Shobha et al., 252  

2013): 253  

 Low (not suitable for drinking): < 0.25 254  

 Moderate: 0.25 – 0.50 255  

 High: 0.50 – 0.75 256  

 Very high (suitable for drinking): > 0.75 257  

 258  

The results of the classification are shown in Table 6. It is found that areas with suitable drinking water 259  

quality are located in the southeast and southwest parts of the study area (Figure 7). 260  

  261  

Table 6. Areas of the drinking water classes. 262  

Class  
Area 

(%) (km2) 

Low 8.29 59.90 

Moderate 64.01 462.72 

High 23.33 168.65 

Very high 4.38 31.64 

 263  

  264  

 265  

4.3. Landform classification 266  

In order to determine the relationship between landform classification and drinking water quality, a 267  

landform classification map for the study area was prepared using TPI. The TPI maps generated using 268  

small (3 cells) and large (45 cells) neighborhoods are shown in Figure 8. TPI is between -144 to 147 and -269  

287 to 492 for the small and large neighborhoods respectively. The landform maps generated based on the 270  

TPI values are shown in Figure 10. The classification has ten classes; high ridges, midslope ridges, upland 271  

drainage, upper slopes, open slopes, plains, valleys, local ridges, midslope drainage and streams (Figure 272  

9). The areas of the landform classes are shown in Figure 10. It is observed that the largest landform is 273  

streams, while the smallest is plains. 274  

 275  

 276  

 277  
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(a) (b) 

 278  

Figure 8. TPI maps generated using (a) small (3 cells) and (b) large (45 cells) neighborhoods. 279  

 280  

 281  

 282  

Figure 9. Landform classification using the TPI method. 283  
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 284  

Figure 10. Areas of the landform classes. 285  

 286  

The relationship between drinking water quality and landform classes were determined (Figure 11). It is 287  

found that drinking water quality is high for streams, valleys, upland drainages and local ridge classes, 288  

while the lowest drinking water quality is in the plain small and midslope classes. The characteristics of 289  

landform classes, such as slope and geology, determine the drinking water quality. For example, in the 290  

plain small class, due to the low slope, there are ample opportunities for high drinking water quality 291  

(Christiansen, 2004). Therefore, landform maps can be used to predict drinking water quality without 292  

water sampling and analysis in the laboratory.   293  

294  
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 295  

 296  

  297  

 298  

 299  

 300  

 301  

 302  

 303  

 304  

 305  

Figure 11. Relationship between drinking water quality and landform classes. 306  

 307  

 308  

5. Conclusions 309  

In this study, fuzzy AHP was used to study the relationship between drinking water quality and landform 310  

classes in south of Firozabad. It was found that 8.29% of the study area had low water quality; 64.01%, 311  

moderate; 23.33%, high; and 4.38%, very high. The lands suitable for drinking water are located in the 312  

southeast and southwest parts of the study area. The relationship between landform class and drinking 313  

water quality show that drinking water quality is high in the stream, valleys, upland drainages and local 314  

ridge classes, while the lowest drinking water quality is in the plain small and midslope classes. So that 315  

in the study determined that without measurement of water sample characteristics using DEM and 316  

extraction landform classes by TPI method can determine water quality by landform classes. For more 317  

accuracy suggest that use DEM with high resolution such as Radar and LIDAR image for extraction 318  

landform classes and prediction of water quality by it. 319  

 320  

 321  
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