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We would like to thank the referee for the thorough reading of the paper and his
valuable comments. A reply to those comments follows.

1) Providing mathematical formulations and critical comparisons of the demand
models (PRP, NSRP and end-use model)

This requires a full paper on its own. Authors are preparing this paper.

2) Evidence of statement on auto and cross correlation
Authors will add figures plus some explanotory text.
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Figure 1 Cross correlation of measured patterns (Milford, OH) on different temporal
scales and spatial scales: 1 home, 10 homes and 20 homes.

Figure 2 Auto correlation of measured patterns (Milford, OH) on different temporal
scales and spatial scales: 1 home, 10 homes and 20 homes. Higher auto correla-
tion at short time steps is due to high number of times with zero flow.

3) Evidence of statement on influence of time step on WQ analysis
A graph of the relation between Reynolds number and probability of stagnation is sug-
gested by the reviewer. Authors will add a graph which shows for some typical (Dutch)
flow patterns at different time steps and different number of downstream homes (with
pipe diameter chosen accordingly) what the probability of stagnation, probability of
laminar flow (Re < 2000) and probability of turbulent flow (Re > 4000) are. Above ca.
50 homes the time step becomes less important. Small time step (< 1 min) is mainly
of interest in the end of the pipe system.

Figure 3 Probability of stagnation, laminar flow and turbulent flow for different time
steps and number of homes (1, 5 homes: Ø59 mm; 10 homes: Ø10 mm; 20, 50, 100,
150 homes: Ø150 mm; 200: Ø300 mm). The influence of time step on particulate
and dissolved substances needs to be investigated further. Authors will discuss more
alaborate on how this can be done.

4) Bottom-up versus top-down approach
Authors will refrain from drawing conclusions on which approach is best as such con-
clusions cannot be drawn at the moment. Authors will add some extra information
on what has been done: Initial network simulations (1990s era) tended to use skele-
tonized distribution systems with top-down demand allocation and an AR water quality
model (Rossman et al 1994 is the classic example). More recent analyses (since 2000)
attempt finer resolution simulations using all-pipe networks with bottom-up demand al-
location and an ADR water quality model (Tzatchkov et al., 2002; Li, 2006). Here top-
down demand allocation means that the measured demand multiplier pattern of the
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pumping station is allocated to the demand nodes with a correction factor to account
for total demand on that node. A bottom-up demand allocation means that the de-
mands per individual home are modelled and subsequently these individual demands
are summed to obtain the demands at larger demand nodes.

5) Typical values of dispersion coefficients
Typical values follow from the following equations which will be added.

δC
δt + u δC

δx = E δ2C
δx2 + f(C) (1)

E represents the mixing (dispersion) coefficient in one-dimensional flow.

Suppose a solute with molecular diffusivity D is transported in fully-developed
steady laminar flow at an average velocity u through a pipe of diameter d. Gill and
Sankarasubramanian (1970) derived an exact but cumbersome expression showing
that the instantaneous rate of dispersion in steady laminar flow grows with time and
asymptotically approaches the equilibrium dispersion rate ET given by Taylor (1953),

ET = d2u2

192D (2)

Lee (2004) simplified the 1970 G&S result and provided a theoretical approximation
for the time-averaged unsteady rate of dispersion, E(t) , for a solute moving in steady
laminar flow through a pipe,

E(t) = ET [1− 1−exp[−16T (t)]
16T (t) ] (3)

Here T (t) = 4Dt/d2 is dimensionless Taylor time and t represents the mean travel
time through the pipe. When Taylor time is large, Eq (3) reduces to Eq (2). For nearly
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all networks links, however, Taylor time is very small [e.g., T (t) < 0.01]. In this case,
the expression in (3) can be further simplified,

E(t) ≈ u2t
6 = uL

6 (4)

where L is the length of the pipe. To illustrate, consider a solute with diffusivity D =
10−5cm2/s transported in steady fully-developed laminar flow (say Re=1000) at 20 ◦C
through a pipe with d=15 cm and L=100 m. The corresponding average velocity is
u=0.67 cm/s. Hence, the mean travel time through the pipe link is t = L/u = 250 min
and the corresponding dimensionless Taylor time is T(t=250 min) = 0.0027.

For this condition, Eqs (3) and (4) give similar results, namely, E(t) = 1, 105cm2/s
and 1,117 cm2/s, respectively. These estimates of the dispersion rate are eight orders
of magnitude greater than the rate of molecular diffusivity. However, they are only
two percent of the equilibrium value given by Taylor8217;s formula in Eq (2), ET =
52, 600cm2/s. Owing to small molecular diffusivity and relatively large pipe diameters,
it is virtually impossible in real water distribution systems for the time-averaged rate of
laminar dispersion to attain the equilibrium value given in Eq (2).

Recent preliminary experimental evidence indicates that Eqs (3) and (4) tend to slightly
over-estimate the actual time-averaged rate of dispersion observed in controlled lab-
oratory runs (Romero-Gomez et al 2008). The reason(s) for this discrepancy are not
clear and this is the subject of ongoing research investigations.
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