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Abstract. The world is facing an unprecedented problem in safeguarding 0.4 % of potable water, which is
gradually depleting day-by-day. From a literature survey it has been observed that the refractive index (RI)
of water changes with a change in salinity or total dissolved solids (TDS). In this paper we have proposed an
automatic system that can be used for real-time evaluation of salinity or TDS in drinking water. A photonic crystal
(PhC) based ring resonator sensor has been designed and simulated using the MEEP (MIT Electromagnetic
Equation Propagation) tool and the finite difference time domain (FDTD) algorithm. The modelled and designed
sensor is highly sensitive to the changes in the RI of a water sample. This work includes a real-time-based
natural sequence follower, which is a machine learning algorithm of the naive Bayesian type, a sequence of
statistical algorithms implemented in MATLAB with reference to training data to analyse the sample water.
Further interfacing has been done using the Raspberry Pi device to provide an easy display to show the result of
water analysis. The main advantage of the designed sensor with an interface is to check whether the salinity or
TDS in drinking water is less than 1000 ppm or not. If it is greater than or equal to 2000 ppm, the display shows
“High Salinity/TDS Observed”, and if ppm are less than or equal to 1000 ppm, then the display shows “Low
salinity/TDS Observed”. The proposed sensor is highly sensitive and it can detect changes in TDS level because
of the influence of any dissolved substance in water.

1 Introduction

Drinking water (or potable water) is considered to be safe
enough to consume by humans or to use for domestic and
medical purposes with a low risk of immediate or long-term
harm. In most countries, the salinity of drinking water is re-
stricted to less than 1000 ppm. Salinity is the measure of con-
centration of salts in water. Greater concentration of salts in
water not only affects the taste of the water, but also causes
health hazards. TDS include inorganic salts and organic mat-
ter dissolved in water, and a TDS level between 300 and
600 mg L−1 is considered to be good (Fawell et al., 1996).
Hence there is a necessity for evaluation of water before it is
allowed to be consumed (Walker and Newman, 2011). TDS

are water quality parameters which can be measured by water
purity measuring devices.

There are several methods of measurement used for drink-
ing water; however, we have studied the following methods
for measuring water purity.

1.1 Electrical conductivity (EC) method for
measurement of TDS in water

The electrical conductivity method is basically used in con-
ventional TDS measurement devices. In this type of TDS
meter, voltage is applied between two or more electrodes.
Positively charged ions like sodium (Na+), calcium (Ca++),
and magnesium (Mg++) will get attracted towards the neg-
atively charged electrode. Negatively charged ions like chlo-
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Figure 1. Anions (green) with a negative charge get attracted to-
ward the positively charged electrode; cations (red) with a positive
charge get attracted toward the negatively charged electrode. Neu-
tral molecules (blue) remain without any electrical influence.

ride (Cl−), sulfate (SO−−4 ), and bicarbonate (HCO−3 ) will get
attracted towards the positively charged electrode. A moving
charge produces an electrical current. Neutral molecules re-
main unaffected by the electrical attraction of the electrodes.
The meter then measures the generated current.

The measured current is a function of the following con-
stituents of water under investigation.

– Quantity and types of ions actually present in the sample
water

– Ions with higher charges tend to have higher conductiv-
ity.

– Larger ions will have lower conductivity as because of
their size they will have a “drag” effect.

– Conductivity of ions in water depends upon tempera-
ture.

TDS meters internally convert the measured current into
parts per million (ppm). Such devices, however, have limita-
tions as detailed below.

– Because most of the devices used the conductivity
method, these devices do not measure all dissolved
solids like sugar, alcohol, organic contents, silica, am-
monia, carbon dioxide, iron oxide, dissolved bacteria
and viruses.

– Different units of measurement used even though all are
referred to as ppm (parts per million).

– The meters come with a factory calibration; sometimes
it may require calibrating the meter using a standard so-
lution.

– Using a TDS meter (pen type) is specific to one type
of dissolved solid solution and must not be transferred
from one type of dissolved solid solution or sample to
the next, as this may result in some serious errors. This
is because TDS meters are calibrated by correlating the

conductivity of the solution with the ppm of dissolved
solids, and this correlation varies considerably from one
species of dissolved solid to the other.

– When the TDS meters are not carefully calibrated, it is
not clear whether they refer to the ppm of sodium chlo-
ride equivalents, or to something else, maybe potassium
chloride (KCl).

– In order to compensate for temperature effect, ATC (au-
tomatic temperature compensation) is required to be
part of the device to provide a value that is “corrected”
at a standard temperature (25 ◦C).

2 Optical refractive index method

Light passing through water tends to bend at a particular an-
gle, depending on the effective RI of water due to dissolved
elements. Thus a method of liquid refractometry is useful in
the detection of the variation in the salinity/TDS of water.
The proposed device in this work is based on the detection of
variation of the effective RI of water because of the TDS. In
subsequent sections we have detailed the working of the pro-
posed device. The following are the advantages of the PhC
sensor-based device presented in the current work.

– Immune to electromagnetic interferences as the mea-
surement is based on RI change, not on electrical con-
ductivity

– Higher sensitivity, compact sized sensing unit (nearly
size of a coin), higher safety in hazardous environments

– The possibility of processing the signal at large dis-
tances from the sensor with little degradation

– A non-invasive method used resulted in no material in-
fluence on the sample water as no probe was inserted
into the water.

– Requires simple circuitry and highly accurate methods
of sensing.

– The inorganic compound NaCl or KCl can be differen-
tiated on the basis of the respective indices.

The sensing element of the proposed sensor is designed us-
ing PhCs. PhCs are periodic structures and consist of a band
gap that restricts the propagation of the specific frequency
range of light. This property enables one to control light and
produce effects that are impossible with conventional optics.

3 pH sensing method

From the literature survey it has been observed that pH sen-
sors are electrochemical devices used for the detection of hy-
drogen ions. The pH factor is used to measure the acidity
or alkalinity of water. The pH value is determined by the
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Figure 2. Evaluation of salinity/TDS in water.

combination of all the acids and bases present, but this is
also influenced by the buffering capacity of the water and
temperature. The main limitation of this method is that pH
change due to a particular acid/base cannot be measured.
This method is less suited for detection of general water qual-
ity. There are several other methods of study like CaCo3,
CEC and SAR. The Co3 of water is evaluated in conjunc-
tion with bicarbonates for several important evaluations such
as alkalinity, the sodium adsorption ratio (SAR) (Hossain et
al., 2016), adjusted sodium adsorption ratio (SAR adj.), and
residual sodium carbonate (RSC). Carbonates will not be a
significant component of water at a pH below 8.0, and will
likely dominate at a pH above 10.3.

4 Theory

4.1 Light propagation in PhC

EM propagation through a medium is dependent on the per-
mittivity of the medium. It is furthermore dependent on
the RI of the material. As the RI changes, the permittivity
changes; as a result, the EM propagation also gets impacted.

The propagation of light in the PhC (sensing element) is
described by Maxwell’s electromagnetic (EM) equations as
given below:

∇ ×E (r, t)=−µ(r)
∂H (r, t)
∂t

, (1)

∇ ×H (r, t)= σ (r)E (r, t)+ ε(r)
∂E(r, t)
∂t

, (2)

∇E (r, t)=
ρ(r, t)
ε(r)

, (3)

∇H (r, t)= 0, (4)

where E(r, t) is the time-varying electric field, H (r, t) is the
time-varying magnetic field, ε (r) is the permittivity, µ (r) is
the permeability, and σ (r) is the conductivity of the medium.
Considering the propagation of an EM wave in any medium,

Figure 3. Design of the two-dimensional PhC line defect.

Table 1. Different types of sensors and target substances for detec-
tion.

Sensor type Target substance

pH Acids and bases
Oxidation reduction potential (ORP) Redox active species
Electrical conductivity (EC) Salts (TDS)
Turbidity Particles
UV/Vis absorption Aromatic substances
Photonic sensor All substances

the equations in the Cartesian co-ordinate system for electric
and magnetic fields are given by

E = Ex x̂+Ey ŷ+Ezẑ, (5)
H =Hx x̂+Hy ŷ+Hzẑ. (6)

The Bloch–Floquet theorem states that an EM wave propa-
gating in a varying dielectric structure is modulated by the
periodicity of the structure. The periodic variation is given
by

ε (r +p)= ε (r) , (7)

where p is the period of the crystal. The EM field is given by

9 (r +p,t)=9(r, t)e−ik,p, (8)

where 9(r, t) is the electric or magnetic field. K is the prop-
agation constant and a is the period of a crystal.

The proposed sensor uses the FDTD (finite difference time
domain) algorithm, which solves Maxwell’s EM equations
(Yee, 1996). For the proposed structure, a Gaussian pulse is
used as a source and the fields are updated at each point of
the Yee grid according to the finite difference Maxwell curl
equations, and the obtained output samples are normalized
with respect to the input signal.

In a PhC, RI is periodically modulated where periodicity
is in the order of wavelength. PhCs are periodic structures of
dielectric material which allow the propagation of a certain
frequency range of light (Joannopoulos et al., 1995, 1997)
and stop others (forbidden band gap). This unique behaviour
of a PhC is used to control the propagation of light (Meade et
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Figure 4. Salinity vs. RI of water. The figure shows variation of the RI with a change in the salinity of water.

Table 2. Shows variation of RI with % of salinity of water.

Salinity of water RI of water
sample (%)

0.01 1.329701796
0.05 1.329701806

0.1 1.329701818
0.2 1.329701843
0.5 1.329701918

0.75 1.329701981
2.5 1.329702418
3.5 1.329702668
10 1.329704293
20 1.329706793
30 1.329709293

al., 1992). The deviation of light in a lattice structure can be
controlled by defect engineering. The following Eq. (1) ex-
plains the movement of light in a PhC by solving Maxwell’s
electromagnetic equation.

∇ ×

(
1
ε
∇ × H

)
=

(ω
C

)2
H (9)

H – the photon’s magnetic field; ε – permittivity; C – speed
of light; and ω – angular frequency.

ε = n2 (10)

n – refractive index
As in Eq. (9), the permittivity of a medium (ε) changes

as the angular frequency of resonance (ω) changes. Equa-
tion (10) shows that ε is dependent on RI and is the basis for
using PhC as a sensor (Liu and Salemink, 2012). Methods

like the photonic band gap method, the effective RI method,
spectroscopy, and optical imaging are available (Fan et al.,
2008). Since input variations are significantly low, the sensi-
tivity of these methods is less (Nguyen et al., 2011).

The design and simulation of sensors is done by the MEEP
tool. This is a FDTD simulation software to model electro-
magnetic systems. To compute transmission flux at each fre-
quency “ω”, sampling of a continuous electromagnetic field
in a finite volume of space is done and is determined by
Eq. (11).

P (ω)= Re ńEω(X)∗×Hω (X)d2X (11)

To calculate P (ω), the following steps are used in the MEEP
tool.

1. Compute the integral of the Poynting vector P (t) for
each time.

2. Fourier transform the value in no. 1.

3. Compute flux at the specified regions and frequencies.

4.2 Machine learning algorithm

Machine learning is an automated action in which improve-
ment is done in the future based on learning from the past.
The key element of this is to devise learning algorithms that
do the learning automatically with minimum human actions.
The algorithm in machine learning allows the developed ap-
plication to come up with its own assessment based on sup-
plied training data (Haung et al., 2010).

The naive Bayes algorithm is a classification technique
based on the Bayes theorem with an assumption of indepen-
dence among predictors (Rish, 2001). The naive Bayes clas-
sifier assumes that the presence of a particular feature in a
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Figure 5. Transmitted spectrum for (a) 500 ppm saline water, (b) 52000 ppm saline water, and (c) 35 000 ppm saline water. The above figures
depict transmission spectra with distinct shifts in peak frequencies for different salinities. In (a) a nascent curve of the transmission spectrum
until 20 % of the outcome is exited immediately, with a dip being followed. These curves indicate that the light intensity drops abruptly
around 25 % of the frequency range of the input light wave. These lines of frequency again tend to achieve maxima and do so at exactly
50 % of the frequency spectrum. This is an indication of the highest possible absorption of the intensity of an input light wave that may
be a cause of polarization in the vicinity of the waveguide of the proposed structure. This velocity of intensity increase will again tend to
become sluggish and abruptly embraces an exponential decay, for which the trapping of light in the waveguide begins to throw off a certain
frequency of harmonic wave that tends to create a disruptive interference of the travelling pulse of Gaussian mode. In (b) we can observe that
the salinity of water, being an analyte as compared against (a), is increased in concentration by 300 %. Here the entire spectrum is exactly
the reciprocal of (a) in that the dip has happened in the first phase of the frequency shift, while here the same has happened in the second.
Also, as against (a), the light intensity abruptly decreases before the center of the frequency spectrum is achieved. Thereby the absorption
and reflection that have taken place before the identification of light intensity at the output become noticeable; only after the frequency of the
spectra are over the central frequency of operation will the light intensity become noticeable twice. The curve remains nascent for around
30 % of the applied frequency and vigorously excites until 60 %. This excitement is immediately damped with a scattering time of under 0.5
units of intensity and remains nascent throughout. This signature curve of the transmission spectrum is incorporated into the database of the
application.
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Figure 6. Transmitted spectrum for water with various salinity lev-
els. The figure shows the overlapping of all the previous spectra to
highlight the shift in the frequency and amplitude.

class is unrelated to the presence of any other feature. Naive
Bayes is known for its simplicity that does better than other
existing classification methods. The Bayes theorem provides
a way of calculating the posterior probability P (c|x) from
P (c), P (x) and P (x|c). This is defined in Eq. (13):

P (c|x)=
P (x |c)P(c)

P(x)
, (12)

P (c|x)= P (x1|c) x P (x2|c)x. . .x P (xn |c) x P (c) . (13)

P (c|x) is the posterior probability of a class (c, target) given
the predictor (x, attributes).
P (c) is the prior probability of a class.
P (x|c) is the likelihood, which is the probability of a

predictor-given class.
P (x) is the prior probability of a predictor.
Depending on various attributes, the algorithm based on

the naive Bayes theorem predicts the probability of different
classes. This algorithm is used to solve problems with multi-
ple classes.

4.3 Methodology

A Gaussian light pulse is considered as a source of simulation
(Oskooi et al., 2010). The simulated data obtained and ready
reference data available (training data) are given as input to
the MATLAB program. The output results are displayed on a
LCD screen along with a voice message, using the Raspberry
Pi kit.

5 Sensor design

The objective is to design a two-dimensional PhC-based sen-
sor (Akahane et al., 2003) for water analysis. The refractive

indices of water with different salinity/TDS were used and
simulations were carried out for the variations in properties
of the sample for each constituent (Sharan et al., 2013; La-
vanya et al., 2014). A shift in output transmitted power and
frequency is observed. Figure 3 shows PhC-based sensor de-
sign and light propagation.

The design specifications are the following.

1. Rods in air configuration

2. Lattice constant: “a”= 1

3. Rod’s radius r= 0.2 µm.

4. The silicon slab’s di-electric constant “ε”= 12.

5. Di-electric constant of the sample used for simulation in
place of air

6. Light source type used, Gaussian pulse (centre fre-
quency 0.295 and width 0.1)

7. Wavelength of light 1350 nm

8. Height of rods considered as infinity

6 Sensor simulation result analysis

This is a generic highly sensitive optical sensor for continu-
ous real-time detection covering the full spectrum of possi-
ble chemical contaminants, organics and turbidity detection.
This is low cost and low maintenance because it requires no
consumables. This sensor measures RI changes in water, us-
ing the Mach–Zehnder interferometry (MZI) principle. Any
substance, when dissolved in water, will change the RI of the
water. Every substance has a unique RI. Dissolved particles
in water result in a combined RI called the effective RI. Any
substance that is dissolved in water will contribute to the ef-
fective RI. A change in the composition of water will result in
a change in the effective RI. The proposed sensor can detect
this change in RI irrespective of the nature of contamination,
whether inorganic, organic or other. A brief comparison of
the detection capability of the proposed sensor with the con-
ventional sensors is shown in Table 1.

As can be concluded from the result in Table 2,

– RI changes to the order of 10−5 with change in % of
salinity of water. The salinity variation is influenced by
the TDS in water. The proposed method can detect RI
change of the order of 10−5.

– The proposed sensor is highly sensitive and can detect
variation of salinity (TDS) in the range of 0.01 to 30%
with an accuracy of 0.04%.

The drinking water always contains inorganic salts, or-
ganic matter and particles. The particles that are larger than
a few micrometres in size always give the greatest RI to
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Figure 7. Workflow of the developed system.

the photonic sensor, while the salts that are normally a few
nanometres in size always give a much lower RI. As such,
even a trace amount of particles and organic matter in the
measured water can greatly influence the RI. This may limit
the application of the PhC sensor for measuring the TDS
in drinking water. However, in the proposed PhC sensor we
have addressed this by considering the following.

1. Any substance, when dissolved in water, will change
the RI of the water. The change in RI is proportional
to the concentration and the RI of the substance. The re-
lationship between RI and concentration is linear. This
linearity is maintained when a substance is dissolved in
water containing various elements provided that there
is no chemical interaction between the added substance
and the elements already present in the initial water so-
lution. So even a small amount of concentration of in-
organic salt will have impacted the effective RI of the

water. From the literature (Deosarkar et al., 2012) we
have found that 10 % (v/v) ethanol and water RI is
1.332, whereas the RI for KCl solutions in a 10 % (v/v)
ethanol and water mixture at 303.15 K is 1.340. So there
is a distinct change in RI (0.008) because of inorganic
salt KCl in the mixture.

2. The change in RI because of KCl is of the order of 10−3

and the studied sensor has an accuracy of the order of
10−5. Hence the PhC sensor will be able to overcome
the limitation of detection of lower contributions in ef-
fective RI by inorganic salts.

3. To ensure that the changes in RI due to inorganic salts
get detected, the designed machine learning system
would match the signature of the water constituent de-
tected. Essentially each element of TDS in water will
correspond to a unique peak frequency of light when
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Figure 8. (a) Integrated device display with Raspberry Pi (red circle), (b) the 2000 ppm salinity result (yellow circle), and (c) the 1000 ppm
salinity water result (blue circle).

passed through water (Sharan et al., 2013). The unique
transmission spectrum of each water constituent is con-
sidered the signature of the respective element.

4. In the machine learning process each signature of TDS
(organic, inorganic and others) is stored in the database
as a reference signature. During detection of TDS, if the
signature matches the stored value, then the presence of
the element is confirmed.

Figure 5c is a replica of Fig. 5a or b. The only distinguish-
ing factor for the current scenario is the fact that the settling
time at the tail and at the horn are squeezed but remain stable
for a very long range of frequency of the applied intensity
of light. This signature curve of the transmission spectrum is
incorporated into the database of the application.

7 Machine learning application design and
development

The naive Bayes classifier algorithm is developed as a
MATLAB-based desktop application (Garg, 2013). The clas-
sifier is designed for using unconditional data provide by the
user and is made generalized to read any dataset with uncon-
ditional data. A Microsoft Excel file is used as input file cate-
gorical feature values (non-numerical continuous data). The
system is intended to read two input files (.xlsx file) which
contain the data set provided by the user. One file contains
the training set and the other the test set. Using the training
set, the prior probabilities of each class are calculated. Us-
ing a single instance from the test set, the conditional prob-
abilities for each feature value are calculated. These values
are then used to calculate the posterior probabilities for each
class. The class with the highest posterior probability is as-
signed as the class for that test instance. This process is done
in each instance in the test set. The accuracy of the algorithm
is calculated by performing a comparison of the class values
that are assigned to the class with the original class values
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of that class. The workflow of the system is shown in the
flowchart below in Fig. 7.

8 Application of machine learning output and
results

The MATLAB-based application developed was used to de-
tect, analyse and classify the outputs obtained by the PhC-
based sensors’ simulated result and was used to evaluate the
ppm level of salinity/TDS in drinking water. The algorithm
selects the class with the highest posterior probability and as-
signs it to the test data. The accuracy of the algorithm can be
obtained by performing a comparison of the class assigned
to the test data with the actual class of the test data. The ac-
curacy of the classifier is calculated by the number of correct
classifications made/the total number of classifications made.
The simulated result of salinity/TDS and training data is used
from the selected USB drives by the developed application
(Figure 8a). Based on the salinity check done, the observed
result is shown in the display of Raspberry Pi. If it is greater
than or equal to 2000 ppm, the display shows “High Salin-
ity/TDS Observed” (Fig. 8b), and if ppm is less than or equal
to 1000 ppm, then the display shows “Low salinity/TDS Ob-
served” (Fig. 8c).

9 Conclusions

The proposed paper concludes the design and implementa-
tion of an automatic system that can be used for real-time
evaluation of potable water. This developed system includes
a PhC-based ring resonator sensing application interface
with an LCD display. The result shows the performance
of the sensor is optimum as it can detect RI change of the
order of 10−5 in drinking water. Even a 0.04 % change in
salinity of water can be detected. The application is based
on the statistical algorithm implemented. Further interfacing
has been done using the Raspberry Pi device to provide an
easy display to show the ppm level of salinity/TDS in water.
This application is more accurate and does more continuous
measurement than traditional methods. Because of the use
of a machine learning algorithm, the accuracy can be further
enhanced by the use of a further sub-classification of TDS.
As future work this approach can be extended to detect
whether water can be used for other purposes like farming
and industrial use.

Edited by: R. Shang
Reviewed by: M. Mokarram and one anonymous referee
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