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Abstract. The general objective of this study is to estimate the performance of the Horizontal Roughing Filter
(HRF) by using Weglin’s design criteria based on 1/3–2/3 filter theory. The main objective of the present study
is to validate HRF developed in the laboratory with Slow Sand Filter (SSF) as a pretreatment unit with the help
of Weglin’s design criteria for HRF with respect to raw water condition and neuro-genetic model developed
based on the filter dataset. The results achieved from the three different models were compared to find whether
the performance of the experimental HRF with SSF output conforms to the other two models which will verify
the validity of the former. According to the results, the experimental setup was coherent with the neural model
but incoherent with the results from Weglin’s formula as lowest mean square error was observed in case of the
neuro-genetic model while comparing with the values found from the experimental SSF-HRF unit. As neural
models are known to learn a problem with utmost efficiency, the model verification result was taken as positive.

1 Introduction

Water is essential for life. Basically all human communities
grow up centering some kind of water source. Apart from
ground-water most of the people of the world depend on sur-
face water as one of the main sources for drinking purposes.
As surface water is unprotected and exposed, there is a pos-
sibility of feacal contamination. The main target of a water
treatment procedure is the removal of chemical and bacte-
riological contamination and inactivation of disease causing
organism. In conventional treatment of surface water, plain
sedimentation and even prolonged storage are often used to
separate the suspended solid concentration which is followed
by flocculation by using chemicals to destabilize the sus-
pended solids of smaller magnitude. In rural area water sup-
ply system, HRF is used to treat the surface water of high
turbidity as it is a cheap alternative to the costly electrical
powered water treatment systems (El-Taweel and Ali, 2004).

HRF is operated at filtration rates ranging from 0.3 to
1.5 m/h. And it could also remove the turbidity ranging from
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50 to 1000 NTU. The use of HRF as a pre-filter reduces the
solid loads within the SSF or Rapid Sand Filter (RSF) which
is used as a pre-filter. The main objective of the present study
was to calculate bacteria removal efficiency of SSF coupled
HRF units (SSFHRF). The work also incorporates an inves-
tigation of the system of HRF with or without the SSF with
respect to removal of solids and pathogenic organism (Bar-
man et al., 2008).

The Hydraulic design of a filtration process in case of HRF
is incorporated by different theories developed in the labora-
tories based on various field studies at different conditions.
But for the rural area water supply by Multistage Filtration,
use of HRF system before the SSF is commonly practiced.
Now the conceptual filter theory for evaluation of efficiency
of the filter in case of HRF is still based on the filtration the-
ory described by Weglin (1996).
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1.1 Weglin’s model

When a particle in the water passes through a gravel bed
filled up with gravel there is a chance that water particles
may escape either through left or through right or on the sur-
face of the gravel and if latter is the case the particles settled
out. Hence, the probability of chance of the success of re-
moval and the failure is 1/3 and 2/3. This is the basic of the
Weglin’s 1/3–2/3 theory.

However, as the process of filtration continues through the
multiple chambers of the HRF more of the particles get set-
tled. So, along the flow path the quantity of the settleble par-
ticles get reduced in the multistage layers when it enters the
filter. This theory has been practiced to formulate the models
for a description of the filter efficiency as well as the removal
efficiency of the HRF. According to the available filter theo-
ries and the Fick’s law the filter efficiency can be expressed
by the filter coefficient and is equal to,

dc/dx= −λc (1)

wherec = Solid concentration,
x = Filter depth,
λ = Filter coefficient or coefficient of proportionality.

From Eq. (1) it can be stated that the removal of the sus-
pended particles is proportional to the concentration or the
particles present in the water. This relation is taken as true
only if the assumptions given next are also true.

The assumption of Weglin’s theory is if a settable particle
enters into a filter bed it can bypass a gravel grain either from
the right or left or settle on the surface of the grain. Hence,
chance to fall on the grain i.e. the success of removal is 1/3
and 2/3rd. Thus, when the given quantities of settable solids
enter into a filter bed; the quantity will reduce in successive
layers as per the probability along the flow path.

The total length of the filter can be described as the num-
ber of parallel plates and act as a multistage reactor so the
performance of the HRF can be ascertained on the basis of
the results obtained from the small filter cells. The total sus-
pended solid concentration after a length of∆x of the filter
cell can be expressed,

Coutlet = ΣC
e−λi∆X
inlet (2)

Where,λi = Filter efficiency of each filter cell,
∆x = Length of experimental filter cell,
Cinlet andCoutlet = Concentration of particles in the inlet and
outlet of the filter.

From the Eq. (2) it is to be stated that after evaluating the
filter depth (length) and the filter coefficient and the SS (sus-
pended solids) concentration, the performance efficiency of
the filter can be predicted. According to Weglin (1996), the
effluent quantity for the n number of compartments is given
by,

Ce= C0 ∗ E1 ∗ E2 ∗ E3 ∗ E4 ∗ . . .. . .. . .. . .En

C0 = Concentration of the HRF influent,
Ce = Concentration of the HRF effluent
E1, E2, E3, E4 . . . . . . . . . . . .En = Filtration efficiency for the
each compartment (1, 2, 3 respectively).

The basic expression for the above relationship is given by,

Ce = Coe−λL (3)

where,λ = Coefficient of filtration
L = Length of the filter.

The Filter efficiency is given by,

E = Ce/C0 = e−λL (4)

Ce = Co ∗ E (5)

Ei = Filter efficiency for (i−1,2,3. . .n) compartments.
The values are obtained either from the table or graphical

nomo-gram developed by Wegelin.

1.2 Artificial Neural Network

Artificial Neural Network is a distributed information pro-
cessing system that has certain characteristics that resemble
with the biological neural network of the human. The devel-
opment of an artificial neural network as prescribed by ASCE
(ASCE, 2000)., must follow the following basic rules,

1. Information must be processed at many single elements
called nodes.

2. Signals are passed between nodes through connection
links and each link has an associated weight that repre-
sents its connection strength.

3. Each of the nodes applies a non-linear transformation
called as activation function to its net input to determine
its output signal.

Advantage of ANN lies in its adaptive nature where
“learning by example” replaces “programming” in solving
problems. ANN is very appealing when very little or incom-
plete understanding of the problem to be solved is achieved.
The intrinsic parallel architecture of ANN allows fast com-
putations of solutions. ANN is widely applied in various
fields of engineering and science due to its ability to recog-
nize patterns, clustering complex dataset, accurate approxi-
mation and process based forecasts (Hassoun, 1995).

ANNs offer a relatively quick and flexible means of mod-
eling and as a result, the application of ANN modeling was
widely reported in various hydrological literatures (Zhang
and Stanley, 1999; Ray and Klindworth, 2000). In the hydro-
logical forecasting context, recent papers have reported that
ANNs may offer a promising alternative for rainfall-runoff
modeling (Tokar and Johnson, 1999), stream flow prediction
(Clair and Ehrman, 1998; Imrie et al., 2000), reservoir in-
flow forecasting (Jain et al., 1999; Coulibaly et al., 2000) and
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in prediction of water quality parameters (Maier and Dandy,
1999). All the papers reported high degree of satisfaction
with the neural network estimations. The development pro-
cedures of the ANN model is discussed next.

1.2.1 Building the ANN

Neural network can be of different type, like feed forward,
radial basis function; time lag etc.The type of the network is
selected with respect to the knowledge of input and output
parameters and their relationship. Once the type of network
is selected, selection of network topology is the next concern.
Trial and error method is generally used for this purpose but
many studies now prefer the application of genetic algorithm
(Ahmed and Sarma, 2004). Genetic algorithms (GA) are
search algorithms based on the mechanics of natural genetic
and natural selection. The basic elements of natural genetics
– reproduction, crossover, and mutation – are used in the ge-
netic search procedure. A GA can be considered to consist
of the following steps:

1. Select an initial population of strings.

2. Evaluate the fitness of each string.

3. Select strings from the current population to mate.

4. Perform crossover (mating) for the selected strings.

5. Perform mutation for selected string elements.

6. Repeat steps 2–5 for the required number of genera-
tions.

1.2.2 Training the ANN

To encapsulate the desired input output relationship, weights
are adjusted and applied to the network until the desired
error was achieved. This is called as “training the net-
work” (Bhatt et al., 2007). There is innumerable number of
“training the network” algorithms available, among which,
back-propagation is mostly prescribed (ASCE, 2000). In the
present study, Quick Propagation (QP) and Conjugate gradi-
ent descent (CGD), both derived from basic backpropagation
algorithms, were used as the training algorithm.

1.2.3 Testing the ANN

Some portion of the available historical dataset is used and
known output is estimated and compared with the actual
dataset to find an Mean Square Error (MSE). If the values
found in this way are less than 1% then the networks are se-
lected for forecast. Few part of the dataset is used for cross-
validation so that the network is not over-trained.
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three chambers of each 450 mm. x 300mm.The length of the whole filter can be 
extended but it will enforce an increased removal of turbidity which in turn will 
decrease the silt storage capacity of the HRF chambers. So, flushing interval would be 
very frequent.  
 
The study has been carried out continuously for 70 Days. If the plant was not been 
monitored continuously the actual picture of reduction of suspended solid concentration 
in the outlet could not be ascertained. However the filter was cleaned periodically by 
hydraulic flushing at the bottom after certain run period by observing the increasing filter 
resistance of the bed. This was checked through the rise of water level in the inlet 
chamber. 

The filter medium namely gravel was placed in the three separate chambers starting 
from the coarse size to the finer ones in the direction of flow and the whole system 
was operated in series. The first compartment was filled up of gravel size 15mm-
10mm having the average size 12.5mm the second compartment consisted of average 
gravel size 7.5mm and the third one of average size  2.5mm. Each compartment was 
being separated by the perforated fiber glass partition to avoid mixing of the gravels of 
different chambers. The filter bed was provided with the under drainage system to 
enable flushing after a certain running period of interval for hydraulic sludge 
extraction by observing the filter resistance (Fig.2). A constant flow rate of 0.75m/h 
was maintained through all the compartments by the help of a peristaltic pump. The 
suspended solids (SS) concentration of raw water for all the chambers at the inlet and 
the SS concentration at the out let was measured by the help of standard procedure 
describe in the Standard methods. Sampling from the investigation was done at least 
three times of week for a period of 70 days. The experiment was carried out both in low 
flow (dry season) and high flow (rainy season) periods during the scan of 70 days .the 
local pond water was used as raw water which has the concentration of suspended 
solids ranges from 40mg/l to 150mg/l .According to Weglin’s design guide line this range 
is medium range of concentration (100-300) mg/l for which filtration rate is 0.75m/h -
1.0m/h are recommended. So a constant flow 0.75m/h was chosen in carrying out the 
experiment(Table.1).  

 

 

 

 

 

 

 

 

 

 
 

Fig. 1: Model of Horizontal Roughing Filter used in the experiment. 

Figure 1. Model of horizontal roughing filter used in the experi-
ment.

2 Methodology

2.1 Preparation of the SSFHRF model

A pilot plant was constructed in the Department of Water
resources Engineering, Jadavpur University to investigate the
objectives of the research study (Fig. 1). The structure of
the plant was made up from the Fiber glass sheeting which
consisted of three chambers of each 450 mm×300 mm. The
length of the whole filter can be extended but it will enforce
an increased removal of turbidity which in turn will decrease
the silt storage capacity of the HRF chambers. So, flushing
interval would be very frequent.

The study has been carried out continuously for 70 days. If
the plant was not been monitored continuously the actual pic-
ture of reduction of suspended solid concentration in the out-
let could not be ascertained. However the filter was cleaned
periodically by hydraulic flushing at the bottom after certain
run period by observing the increasing filter resistance of the
bed. This was checked through the rise of water level in the
inlet chamber.

The filter medium namely gravel was placed in the three
separate chambers starting from the coarse size to the finer
ones in the direction of flow and the whole system was oper-
ated in series. The first compartment was filled up of gravel
size 15 mm–10 mm having the average size 12.5 mm the sec-
ond compartment consisted of average gravel size 7.5 mm
and the third one of average size 2.5 mm. Each compart-
ment was being separated by the perforated fiber glass par-
tition to avoid mixing of the gravels of different chambers.
The filter bed was provided with the under drainage system
to enable flushing after a certain running period of interval
for hydraulic sludge extraction by observing the filter resis-
tance (Fig. 2). A constant flow rate of 0.75 m/h was main-
tained through all the compartments by the help of a peri-
staltic pump. The suspended solids (SS) concentration of
raw water for all the chambers at the inlet and the SS con-
centration at the out let was measured by the help of standard
procedure describe in the Standard methods. Sampling from
the investigation was done at least three times of week for a
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Fig.2 : Basic Layout of the HRF and HRF filter bed that was used in the experiment 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2.Application of Neuro-Genetic Model & Weglin’s Model 

Run time and filtration efficiency of the HRF input chamber was taken as input and 
filtration efficiency at the output chamber was taken as output. Table 3 depicts the details 
of the training methodology of the neuro-genetic models. The dataset for the training was 
the same dataset that was found from the SSFHRF setup and used in the formula 
prescribed by Weglin(Eqn.1&2) to generate the output shown in Table.2.b. 
 
70% of the available dataset was used as training, 15% for testing and rest was used for 
cross validation .Four feed forward neural network is built. Two of which was trained 
with QP and other two by CGD. The genetic algorithm was applied to select the 
topology of all the four networks from possible forty solutions. Sixty combinations were 
forced from these patterns allowing 90 % cross over rate and 20 % mutation capability.  

Figure 2. Basic layout of the HRF and HRF filter bed that was used in the experiment.

Table 1. E-value for different compartment and efficiency value for the total filter.

Effective size
(dg)

Filtration rate
(m/h)

Length of
compt.

E-value
(%)

Total E-value
(dec)

5 mm
10 mm
15 mm

0.75 m/h
0.75 m/h
0.75 m/h

0.45 m
0.45 m
0.45 m

E1=21.3
E2=19.6
E3=26.0

0.026

period of 70 days. The experiment was carried out both in
low flow (dry season) and high flow (rainy season) periods
during the scan of 70 days .the local pond water was used as
raw water which has the concentration of suspended solids
ranges from 40 mg/l to 150 mg/l .According to Weglin’s de-
sign guide line this range is medium range of concentration
(100–300) mg/l for which filtration rate is 0.75 m/h–1.0 m/h
are recommended. So a constant flow 0.75 m/h was chosen
in carrying out the experiment (Table 1).

The Table 2a depicts the concentration of the HRF effluent
as found from the HRF filter developed for the present study.
The corresponding runtime and initial concentration is also
given in the table.

The Table 2b depicts the concentration of the effluent as
calculated from the Weglin’s 1/3–2/3 theory (Eq. 2).

The third model was developed by artificial neural network
and with the help of dataset taken from the HRF made in the
laboratory. As neural network learn from the results rather
than from the reasons, the model tried to learn the patterns
that exist between the inputs and the output of the SSFHRF
model. A detailed description of ANN is given in Sect. 1.2.

2.2 Application of Neuro-Genetic model and Weglin’s
model

Run time and filtration efficiency of the HRF input cham-
ber was taken as input and filtration efficiency at the output
chamber was taken as output. Table 3 depicts the details of
the training methodology of the neuro-genetic models. The
dataset for the training was the same dataset that was found
from the SSFHRF setup and used in the formula prescribed
by Weglin (Eqs. 1 and 2) to generate the output shown in
Table 2b.

70% of the available dataset was used as training, 15% for
testing and rest was used for cross validation .Four feed for-
ward neural network is built. Two of which was trained with
QP and other two by CGD. The genetic algorithm was ap-
plied to select the topology of all the four networks from pos-
sible forty solutions. Sixty combinations were forced from
these patterns allowing 90% cross over rate and 20% muta-
tion capability.

The training as explained in Sect. 1.2 was continued until
the MSE drops below 1%.Each of the network was trained
for 100 times with 100 000 iterations per training.
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Table 2a. Summary table of the results of the SSFHRF model.

Run time C0 Ce

(Days) (mg/l) (mg/l)

3 12.5 4.02
5 9.8 4.38
7 14.6 4.62
10 18.8 4.89
12 20.7 4.86
14 25.8 4.65
17 16.7 3.89
19 19.6 3.02
22 21.65 4.02
24 22.8 4.63
27 38.8 4.56
30 24.4 2.8
32 30.1 3.8
35 48.8 3.62
38 42.4 2.8
40 48 4.6
42 58.6 4.32
46 72 5.2
48 84 6
51 116 3.8
53 67 4.3
54 98 3.9
55 47 2.6
58 50 3.43
60 50.4 7
61 33.8 4.26
62 22.5 4.36
64 33.6 2.9
67 48.6 5.6
68 47.7 3.1
70 33.2 3.1

After the training, average absolute error achieved from
the four networks named QP1 and QP2 for the 2 networks
trained in QP and CGD1 and CGD2 for the networks trained
in CGD were 0.08921, 0.0921, 0.07721 and 0.08721 respec-
tively.The average MSE from the training of these networks
were 0.09, 0.097, 0.00993 and 0.0978 respectively which
indicates that all the networks had sufficiently learned the
present problem.

The networks were tested with two patterns (15% of the
total dataset) and the average MSE and average absolute er-
ror was found as 0.79, 0.77, 0.5, 0.65 and 0.87, 0.86, 0.75,
0.85 respectively for QP1, QP2, CGD1 and CGD2.

CGD1 was selected as the best performing network due to
the least absolute and mean square error achieved during the
training and testing procedures.

Table 2b. Summary table of the results from Weglin’s model.

Run time C0 Ce

(Days) (mg/l) (mg/l)

3 12.5 0.33
5 9.8 0.25
7 14.6 0.38
10 18.8 0.49
12 20.7 0.54
14 25.8 0.67
17 16.7 0.43
19 19.6 0.51
22 21.65 0.56
24 22.8 0.57
27 38.8 1
30 24.4 0.63
32 30.1 0.78
35 48.8 1.27
38 42.4 1.1
40 48 1.25
42 58.6 1.52
46 72 1.87
48 84 2.18
51 116 3.01
53 67 1.34
54 98 2.55
55 47 1.22
58 50 1.3
60 50.4 1.31
61 33.8 0.88
62 22.5 0.59
64 33.6 0.87
67 48.6 1.26
68 47.7 1.24
70 33.2 0.86

2.3 SSFHRF model verification criteria

The verification of the SSFHRF model was assessed by com-
paring its response with the output from the Weglin’s model
and the neuro-genetic model. The evaluation criteria in-
cluded percentage MSE, correlation coefficient (r), coeffi-
cient of efficiency (C.E.) and Standard Deviation (STDEV).

%MSE= ((T p−Op)/T p) × 100 (6)

r =
[∑

((T p− Tm)(Op−Om))/

(
n∑
1

(T p− Tm)2
n∑
1

(Op−Om)2)1/2
]

(7)

C.E.=1−(
n∑
1

(T p−Op)2/

n∑
1

(T p−Tm)2) (8)
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Table 3. Comparison of CGD1 and Weglin’s model with respect to
the HRF setup.

MSE r C.E STDDEV

CGD1 0.63 0.98 0.988 0.095
Weglin’s model 3.32 0.14 0.408 1.78

STDDEV=

n∑
1

(Tn−T̄n)2

n
(9)

Where,T p is the target value for thep-th pattern;Op is
the estimated value for thep-th pattern,TmandOmare the
mean target and estimated values respectively andn is the to-
tal number of patterns. MSE shows the measure of the differ-
ence between target (T p) and estimated (Op) value,r defines
the degree of correlation between two variables. C.E. Crite-
rion has the basis of standardization of the residual variance
with initial variance (Nash and Sutcliffe, 1970).

In this criterion, a perfect agreement between the observed
and estimated output yields an efficiency of one. A negative
efficiency represents lack of agreement and zero agreement
means all the estimated value is equal to the observed mean.
STDDEV is the measure of deviation of the estimated value
from the target output. A perfect match between observed
data and model simulations is obtained when STDDEV ap-
proaches 0.0 (Yitian and Gu, 2003).

3 Results and discussion

In order to compare the performance of the SSFHRF labora-
tory model with ANN and Weglin’s model; MSE,r, C.E,
STDDEV were calculated between observed values taken
from the SSFHRF setup and computed values estimated
by the neuro-genetic model (CGD1) and Weglin’s model
(Eq. 2). The verification criteria selected for the present study
was prescribed by Nash and Sutcliffe (1970) for the selection
of the best performing model.

According to the results from the performance validat-
ing criterias, CGD1 was found to be more similar than the
Weglin’s model with the output from SSFHRF setup. The
MSE values obtained were 0.63 and 3.32 respectively for
CGD1 and the Weglin’s model (Table 3).

CGD1 values were found to be 5.27 times (MSE) nearer
to the values found from the SSFHRF model than the val-
ues estimated by the Weglin’s model. Estimated values from
CGD1 gave high model efficiency (98%) whereas Weglin’s
model had an efficiency of 40.8% i.e. the neuro-genetic
model was 2.4 times more efficient than the Weglin’s model
when compared with the output of SSFHRF. The STDDEV
of CGD1 was found to be as 0.095 where as the same for
the ANN model was 1.78. So the ANN model was 18.7
times closer to the SSFHRF values than Weglin’s model. The

values from CGD1 were found to be 98% related with the
SSFHRF values but Weglin’s model was found out to be only
14% related with the same values.

CGD1 model was found to be supportive of the results
from the SSFHRF filter but the results from the Weglin’s
model was showing negative decision. But as neuro-genetic
models learn from effects than from the causes and many au-
thor supports the use of neuro-genetic models in solution of
hydrological problems the authors of the present study take
the outcome from the neuro-genetic model as verifiable re-
sults for the SSFHRF unit.

4 Conclusions

Filtration efficiency of a horizontal roughing filter was esti-
mated with a laboratory developed filter model with a sand
filter as a pretreatment unit. The efficiency of the HRF was
compared with neuro-genetic model and the 1/3–2/3 model
of Weglin. From the performance validation criterions it was
found that filter efficiency achieved from the experimental
model was supported by the neuro-genetic model whereas
the results from the filter do not agree with the Weglin’s
concept. The reason behind this contradictory decisions
about the SSFHRF model can be due to the Weglin’s con-
sideration of some parameters and constants which changes
with change in climatic and experimental conditions of the
setup but in case of neural network model, it considered
no such parameters and simply follows the pattern of the
input with output in the problem domain. Neural network
models are nowadays hugely used in different hydrologic
estimations and are popular for their accuracy and efficiency.
Many papers have been published in this regard. As the
results from the present experimental HRF was supported
by a neuro-genetic model, the verification of the laboratory
model was taken as positive.
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