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Abstract. The aim of this work was to evaluate a smart electronic tongue device as an alternative for qualitative
and quantitative monitoring of drinking water. The smart electronic tongue consisted of a voltametric polypyrrole
sensor array, linked with a multi-channel electronic system (multipotentiostat) based on PSoC (programable
system on chip) technology controlled by a smartphone with a data acquisition and control app. This device
was used in the monitoring of drinking water from the Sincelejo city water supply system; also, water samples
collected and analyzed by the public health agency were used. The voltammetric measurements carried out
with the smart electronic tongue showed cross-sensitivity of the polypyrrole sensor array, which allowed the
discrimination of the samples through of principal component analysis by artificial neural networks. In addition,
the voltammetric signals registered with the smart electronic tongue allowed, through partial least square (PLS)
by artificial neural networks analysis, estimating the concentrations of some important analytes in the evaluation
of the physicochemical quality of drinking water with R? values higher than 0.70. The results allowed to conclude
that the smart electronic tongue can be a valuable analytical tool that allows, in a single measure, to perform
qualitative and quantitative chemical analysis (alkalinity, calcium, residual chlorine, chlorides, total hardness,
phosphates, magnesium, and sulfates), it is also a fast, portable method that can complement traditional analyzes.

1 Introduction

In recent decades, there has been an increase in interest and
concern for the quality control of food, drinking water, bev-
erages, and, in general, products for human consumption. To
accomplish this control, in addition to reliable methods, it
has been sought to have fast methods that allow real time and
online surveillance. In the particular case of drinking water,
analyses are usually carried out using techniques and meth-
ods that mostly require sophisticated and specialized equip-
ment, such as UV-vis spectrometers, chromatographs, mass
spectrometers, infrared spectrometers, and atomic absorp-
tion spectrometers, among others (Richardson and Ternes,
2017; Rice et al., 2017). In general, this kind of equipment
is expensive and requires qualified personnel for their han-
dling, they are also bulky equipment that consume signifi-
cant amounts of energy and can only operate in facilities or

laboratories suitable for their operation. Furthermore, most
of the analyses require sample pre-treatment, long process-
ing times, and generate a considerable amount of chemical
waste. These conditions and restrictions in traditional ana-
Iytical approaches have led to the development of cheaper,
faster, easier, and more efficient alternative technologies. The
above has led to the generation of new technologies, among
which there are the electronic tongues (Arrieta et al., 2019;
Atas et al., 2020; Dias et al., 2015; Legin et al., 2019).
Electronic tongues are analytical devices, made up of a
non-specific chemical sensor array, with cross-sensitivity,
coupled to a multichannel measurement system and an app or
software that allows pattern recognition (Vlasov et al., 2005).
A certain analogy can be established between the human gus-
tatory taste system and electronic tongues, in the sense that
we can find some approximations in its structure and prin-
ciples of operation. Figure 1 presents a comparative scheme
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Figure 1. Functional similarities between the human taste system and an artificial system (smart electronic tongue).

that shows the similarities between the functioning of the hu-
man taste system and the artificial system.

Although the electronic tongue devices have used various
analytical principles such as optical, mass, and frequency
measurements, among others (Khan et al., 2016; Li et al.,
2019; Kovacs et al., 2020; Sehra et al., 2004; Aydemir and
Ebeoglu, 2018), the ones based on electrochemical measure-
ments have been the most widely accepted. Devices based
on potentiometric and voltammetric electrochemical mea-
surements have been more widely accepted and have shown
their effectiveness in the analysis of different types of bev-
erages (Arrieta et al., 2019; Belugina et al., 2020; Titova
and Nachev, 2020; Marx et al., 2017). Electronic tongues
based on voltammetric measurements have advantages such
as greater ease of sensors elaboration, low sensitivity to
electronic noise, high analytical sensitivity, and versatility
in terms of the voltammetric technique used (square wave,
cyclic, pulse, etc.).

Electronic tongues have been used in the analysis of min-
eral waters (Sipos et al., 2012), waste waters (Legin et al.,
2019), bottled waters (Dias et al., 2015), and qualitative
(sample classification) and quantitative analyses on analytes
such as Nat, Kt, Ca2t, CI~, NaCl, NaN3, NaHSO3, ascor-
bic acid, and NaOC (Winquist et al., 2011; Atas et al., 2020),
among others. However, no reports have been found on the
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application of this technology in the analysis of drinking wa-
ter from distribution networks and on the analytes of greatest
interest in the evaluation of its physicochemical quality such
as hardness, alkalinity, chlorides, sulfates, chlorine, etc.

The reported electronic tongue devices are mostly labo-
ratory equipment, which limits their portability for on-site
analysis. In this work, the application of a portable smart
electronic tongue is reported, made up of a miniaturized
polypyrrole (PPy) sensor array, a multichannel device made
under PSoC (programable system on chip) technology and
a smartphone equipped with an Android app. The recorded
data were analyzed with methods of pattern recognition and
regression by partial least squares based on artificial neural
networks. This smart electronic tongue was used to quali-
tatively and quantitatively analyze samples taken from the
22 points (hydrants) of the distribution system.

2 Materials and methods

2.1 Collection of samples and sampling area

The samples were taken from the drinking water supply net-
work at the hydrants defined by the drinking water service
provider company (ADESA SAESP), located in communi-
ties 1,2,3,4,5,6,7, and 9 of the city of Sincelejo — Colombia
(Sincelejo mayorship, 2017), located in the northeast of the
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country at 9°18” N longitude, —75°23" latitude, west of the
Greenwich meridian, altitude of 213 m.s.1. For the sampling,
the national guidelines on the minimum number of samples
and the distribution of sampling points established for the
populations according to their number of inhabitants were
taken into account.

The sampling hydrants were defined taking into account
the programming of the operating company of the water sup-
ply system and the entity of surveillance and control of the
quality of drinking water. Table 1 presents the summary of
the programming of the sampling carried out, in which the
location or geographical area was noted; commune (C), sec-
tor (S), and the place of sampling point or hydrant (H). For
the sampling procedure, the protocols established by the na-
tional health authority were followed (National Institute of
Health et al., 2019).

The samples were divided into aliquots to carry out the dif-
ferent analyses. The characterization of the physicochemical
analyzed parameters was carried out in the facilities of the
departmental reference laboratory of public health of the De-
partment of Sucre, an entity in charge of exercising control
and monitoring of water for human consumption and its char-
acteristics. The methods and techniques used for each of the
parameters analyzed were those established in the standard
analysis methods required by national regulations (Richard-
son and Ternes, 2017; Rice et al., 2017).

2.2 Smart electronic tongue device and measurements

The smart electronic tongue developed in our laboratory con-
sisted of a voltammetric PPy sensor array and a portable mul-
tipotentiostat controlled with a smartphone. For the elabora-
tion of the sensor array, a card with screen-printed electrodes
from BVT Technologies (AC9C) was used, which consists of
an auxiliary or counter electrode (CE), an Ag/AgCl reference
electrode (ER), and seven working electrodes of graphite,
which were used as substrates for the generation of the sen-
sors. Thus, the sensor array consisted of seven PPy voltam-
metric sensors doped with seven different doping agents:
PPy/DBS (PPy doped with sodium dodecyl benzene sul-
fonate), PPy/SO4 (PPy doped with sodium sulfate ), PPy/SF
(PPy doped with sodium persulfate), PPy/FCN (PPy doped
with sodium ferrocyanide), PPy/TSA (PPy doped with p-
toluene sulfonic acid), PPy/AQDS (PPy doped with dis-
odium salt of the acid anthraquinone-2,6-disulfonic), and
PPy/PC (PPy doped with lithium perchlorate).

The sensor array was prepared by chronoamperomet-
ric electropolymerization of pyrrole at 0.8V, using an
EG & G 2273 PAR potentiostat/galvanostat, controlled with
PowerSuite software. The PPy with each of the dopants was
electrodeposited on the graphite substrates arranged in a cir-
cular way on the commercial AC9C card. Table 2 shows the
experimental conditions used in the synthesis of the sensor
array.
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Figure 2. Image of the smart electronic tongue formed by the
miniaturized sensor array, portable electronic device, and smart-
phone with an Android app.

The portable multipotentiostat was made on a FREESOC
card with a PSoC 5LP microchip (programmable system on
chip), which was programmed with the PSoC creator soft-
ware. This electronic device was designed to simultaneously
register the voltammetric signals of the seven sensors of the
array through seven measurement channels. In addition, a
Bluetooth card was incorporated for data transmission to
a smartphone equipped with an Android app designed to
control the device and record data. Details on the electro-
chemical polymerization techniques, the development of the
electronic device, and the control Android app have been
previously reported (Arrieta and Fuentes, 2016; Arrieta et
al., 2015, 2016). Figure 2 presents an image of the smart
electronic tongue, and its three fundamental components are
highlighted.

The measurements carried out with the smart electronic
tongue were carried out on 10 mL of sample at room tem-
perature and without previous treatment. Seven replicates of
each measure were made. The voltammetric signals were
recorded at a sweep rate of 100mV s~!, in a potential range
of —1.0 to 0.5V with an initial potential of 0.0 V.

2.3 Data processing and evaluation of the qualitative
and quantitative analysis carried out with the smart
electronic tongue

From the obtained signals during the measurements carried
out with the smart electronic tongue, the current data gener-
ated by the sensor array were recorded. Each sensor gener-
ated a voltammogram of each sample, composed of 100 data,
which allowed having 700 data with the entire sensor ar-
ray, each one of them were a variable in the data matrix
for each sample, which constituted a species “fingerprint” of
the sample. Thus, when analyzing all the samples, a matrix
of 107 800 data was constructed (700 variables x 22 sam-
ples x 7 replicates).

To validate the classification capacity (qualitative analy-
sis) in drinking water samples, the matrix was subjected to a
pattern recognition analysis by applying artificial neural net-
works for principal component analysis. By evaluating the
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Table 1. Drinking water sampling location data.

Sample Location Sampling Geographical coordinates
code (commune location
and sector)  (hydrant)

M1 CIS3 H2014 Latitude 9°18'25.30” N/longitude —75°24/40.70” O
M2 C2S18 H2016 Latitude 9°18'38.50” N/longitude —75°24/03.34” O
M3 C357 H2015 Latitude 9°17/26.24” N/longitude —75°24/43.10” O
M4 C3S8 H2013 Latitude 9°16/58.67” N/longitude —75°24/24.26"” O
M5 C3S8 H2012 Latitude 9°17'07.08” N/longitude —75°24/22.16” O
M6 C4S512 H2011 Latitude 9°17'21.76” N/longitude —75°23/53.74” O
M7 C4S12 H2008 Latitude 9°17'49.72" N/longitude —75°23/34.10” O
M8 C4S15 H2029 Latitude 9°18’01.62” N/longitude —75°23/26.57” O
M9 C4S15 H2007 Latitude 9°18'15.46” N/longitude —75°23/57.88” O
M10 C5S25 H2030 Latitude 9°18'25.66” N/longitude —75°23/40.97” O
Mi11 C5S26 H2027 Latitude 9°18"13.86” N/longitude —75°23/15.38” O
MI12 C5S33 H2004 Latitude 9°17/56.10” N/longitude —75°2319.42” O
M13 C5S33 H2005 Latitude 9°18’01.62” N/longitude —75°23/26.57” O
M14 C5S34 H2028 Latitude 9°18'27.19” N/longitude —75°22/52.60” O
M15 C6S23 H2019 Latitude 9°18’46.03” N/longitude —75°23'57.16" O
M16 C6S23 H2017 Latitude 9°19'09.85” N/longitude —75°23/47.25"” O
M17 C7S27 H2003 Latitude 9°18'52.52" N/longitude —75°23/02.86"” O
M18 C7S34 H2026 Latitude 9°18’09.36” N/longitude —75°23’43.21” O
M19 C7S49 H2001 Latitude 9°18’12.13” N/longitude —75°22/45.44"” O
M20 C7S51 H2006 Latitude 9°18"16.93” N/longitude —75°23/22.80"” O
M21 C9S40 H2022 Latitude 9°17'49.89” N/longitude —75°23'03.97” O
M22 C9S40 H2024 Latitude 9°17/50.47” N/longitude —75°22/41.30” O

Table 2. Experimental conditions for the electropolymerization of
the sensor array.

Sensor  Acronym Concentration  Polymerization
Pyrrole/doping time (s)
agent [M]
S1 PPy/SO4 0.1/0.05 55
S2 PPy/DBS 0.1/0.1 50
S3 PPy/SF 0.1/0.05 65
S4 PPy/FCN 0.1/0.1 60
S5 PPy/PC 0.1/0.1 60
S6 PPy/TSA 0.1/0.1 70
S7 PPy/AQDS 0.1/0.05 60

results and the reproducibility of the method, the measure-
ment procedure was repeated on a different group of samples,
sampled 15d after the first discrimination test and with the
same sampling protocol, measurement with the smart elec-
tronic tongue and treatment of data were applied. The pur-
pose of these experiments was to verify the repeatability of
the results obtained with the smart electronic tongue.

On the other hand, a quantitative analysis was carried
out from regression models using artificial neural networks
for partial least squares to establish a correlation between
the voltammetric measurements registered with the smart
electronic tongue, and the concentrations of eight physico-
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chemical parameters related to drinking water quality (alka-
linity, calcium, residual chlorine, chlorides, total hardness,
phosphates, magnesium, and sulfates) were evaluated. The
physicochemical parameters were determined using the tra-
ditional methods validated by the norms and standardized
methods (Richardson and Ternes, 2017; Rice et al., 2017).
That is, created prediction models were generated from the
data obtained in the characterization process with the smart
electronic tongue (matrix X, independent variables) and the
physicochemical parameters determined using the traditional
methods in each water sample (Y matrix, dependent vari-
ables). In this way, the concentrations of the physicochemical
parameters of drinking water determined by traditional meth-
ods were evaluated against those predicted by smart elec-
tronic tongue through regression models.

The chemometric treatment of the data was carried out
using specific artificial neural networks designed under the
MATLAB V 7.12 program using Neural Network Tool-
box v.3.0 (Kong et al., 2017). The data were not pre-
treated and to select the number of latent variables, a “cross-
validation” was performed before building the prediction
model. Calibration and validation were performed from the
concentrations determined by the methods and techniques es-
tablished in the standard analysis methods required by na-
tional regulations (Richardson and Ternes, 2017; Rice et al.,
2017).
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Figure 3. Voltammetric signals from the smart electronic tongue
sensor array recorded in the drinking water sample M1 (C1S3-
H2014).

3 Results and discussions

3.1 Voltammetric response of smart electronic tongue

Once the samples were collected at the sampling points,
the respective measurements were done by using the smart
electronic tongue in an aliquot of 10 mL and the measure-
ment time was 4 min per sample. The voltammetric signals
showed cross sensitivity in the sensors; each sensor pre-
sented a particular response in the same sample, which means
that each one provided information about the analyzed sam-
ple, which constitutes the “fingerprint”, with anodic and ca-
thodic processes of the PPy against the samples (Arrieta et
al., 2004). In Fig. 3, the response of the sensor array against
sample M1 (C1S3-H2014) is presented as an example. It
can be showed in the graphs that the voltammetric signal
of the sensor S1 (PPy/SO4) showed an anodic process at
—0.249V and in the cathodic sweep a reduction process
could be observed at —0.875 V. The response of the sensor S2
(PPy/DBS) showed a redox process, with an oxidation peak
at —0.109'V and a wide reduction peak in the cathodic scan
at —0.799 V.
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Figure 4. Voltammetric signals of the S1 sensor (PPy/SOy4)
recorded in different samples of drinking water.

The signal recorded with S3 sensor (PPy/SF) consisted of
two anodic processes at 0.249 and —0.351 V. On the other
hand, the voltammetric response of S4 sensor (PPy/FCN)
presented a signal with poorly defined anodic and cathodic
process at 0.287 and —0.124 V, respectively. The voltammet-
ric responses of the S5 sensor (PPy/PC) and S6 (PPy/TSA)
showed in both cases a redox process, composed of an an-
odic peak at 0.03 V for PPy/PC and —0.252 V for PPy/TSA.
Whereas with cathodic scanning it could be seen that
PPy/PC presented the reduction peak at —0.747V, while
the PPy/TSA cathodic scanning showed the reduction peak
at —0.821 V. The voltammetric signal of the S7 sensor
(PPy/AQDS) presented an oxidation process in the cathodic
wave at 0.202 V.

Besides this, the cross sensitivity was evaluated, which is
the capacity of the sensor array to generate particular signals
in front of each one of the samples. In Fig. 4, the behavior of
the S1 sensor (PPy/SO4) against some water samples taken
at different sampling points (M1, M2, M3, M4, and M5) is
shown as an example. Thus, the main differences are ob-
served in the position of the peaks (redox potentials) of each
of the sensors and the shapes of the curve. This allows obtain-
ing information from the analyzed water samples. Starting
from this fact, and to extract the information contained in the
signals, a pattern recognition analysis was performed using
artificial neural networks for principal component analysis.

In summary, it could be shown that the shape and posi-
tion (redox potentials) of the peaks in the voltammetric sig-
nals were markedly different in each of the sensors and a dif-
ferent signal pattern was recorded in each sample, allowing
them to have together a “fingerprint” of each one. In general
terms, the signals were related to the entry and exit of ionic
species from the water samples in the polymeric film of the
PPy sensor to maintain its electroneutrality, which is why the
obtained signals contain information of each of the samples
analyzed (Arrieta et al., 2004).

Drink. Water Eng. Sci., 15, 25-34, 2022



30 A. A. Arrieta et al.: Qualitative and quantitative monitoring of drinking water

30 (a) M1

20

PC 2 (15.85%)

Figure 5. Plot of principal component score of signals collected in
drinking water samples by smart electronic tongue.

3.2 Qualitative analysis

From the recorded signals, a matrix was constructed with
the data obtained in each of the measurements. The matrix
was used to perform a pattern recognition analysis to clas-
sify the samples, Fig. 5 shows the result obtained from the
pattern recognition analysis by artificial neural networks for
principal components, applied to the values supplied by the
voltammetric signals recorded for the different water sam-
ples. The two principal components represented show a vari-
ance of 72.09 %.

In Fig. 5, each point corresponds to a sample taken from a
hydrant or sampling point taken in the respective geograph-
ical area (commune C, sector S, and hydrant H). The first
principal component (PC 1) summarizes the most informa-
tion with 56.49 % and the second principal component (PC 2)
also collects a significant amount of 15.85 %. As can be seen,
the different analyzed samples are remarkably distributed in
the plane of the principal components with a higher concen-
tration close to zero in both axes. In the area located in the
lower right part of the graph (Fig. 5a), groups of samples
may appear to be overlapping due to the high concentration
of points (samples). However, when enlarging the area, it can
be seen that none of the samples overlap (Fig. 5b).

The samples with the greatest separation in the plane of
the principal components: M1 (C1S3-H2014), M2 (C2S18-
H2016), M3 (C3S7-H2015), M4 (C3S8-H2013), and
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M5 (C3S8-H2012) belong to communes 1, 2, and 3, which
are found in the western part of the city, with sample M1 be-
ing the one with the highest degree of separation and the only
sample from commune 1. On the other hand, samples M4
and M5 belong to the same commune and the same sector,
presenting a certain proximity. This trend in the spatial distri-
bution of the samples without forming defined groups in the
principal components plane may be due to the fact that the
water supply is carried out from the main treatment site and
reaches different points where temporary storage is carried
out with re-pumping towards the geographical location ar-
eas. This distribution process with different storage sites can
generate slight differences in the composition of some com-
ponents due to the lack of homogeneity in the re-pumping
points where there may be differences in storage temperature,
possible mixtures, and different cleaning protocols, among
others. In addition to other factors such as differences in sam-
pling hours, maintenance of distribution lines, etc., this result
showed the discrimination capacity of the smart electronic
tongue against drinking water samples.

Furthermore, a second test was carried out to corrobo-
rate the quality and reproducibility of these results. This trial
consisted of repeating the experiences after 15 d. For this, a
new group of samples collected at the same points was used
and then followed with the same protocols for sampling and
recording signals with the smart electronic tongue. In this
way, after treating the data with the artificial neural network
method for principal component analysis, a new principal
component scores graph was generated from the new experi-
ments.

When comparing the distribution and the positions of the
samples with those obtained from the experiments carried out
in the first test (Fig. 5), a great similarity in the results could
be observed . The information collected for PC 1 and PC 2
was 62.15 % and 9.89 %, respectively, for a total of 72.04 %
of the information collected for the total variance, a value
similar to that obtained in the first trial (72.09 %). Although
there are small variations, which may be the product of dif-
ferences between the physicochemical characteristics of the
samples, there is a high degree of reproducibility.

3.3 Quantitative analysis

The ability of the smart electronic tongue to provide quanti-
tative information of the water samples under study was ex-
plored by obtaining correlations between the voltammetric
measurements recorded by the smart electronic tongue and
the concentration of some compounds or substances present
in drinking water samples. For this, the data of the two sets
of 22 samples were taken to guarantee the robustness of the
resulting models.

To carry out the extraction of quantitative information, re-
gression models of artificial neural networks for partial least
squares were used, and eight relevant physicochemical pa-
rameters were chosen in the evaluation of the quality of
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Figure 6. Regression models of physicochemical parameters (alkalinity, calcium, hardness, and phosphates) generated by smart electronic

tongue and traditional methods of chemical analysis.

drinking water (hardness, alkalinity, chlorides, residual chlo-
rine, sulfates, magnesium, calcium, and phosphates).

The results of the application of the regression analysis are
shown in Figs. 6 and 7 (the results were divided into two fig-
ures to improve the visualization). Calibration and validation
were performed from the concentrations determined by tradi-
tional methods of analysis as explained in the materials and
methods section. In Fig. 6, the regression graphs obtained
from the application of the models on the parameters alka-
linity, calcium, hardness, and phosphates are presented.

It could be seen that the R? (coefficient of determination)
reached values of 0.701 in the case of phosphate, 0.818 for
alkalinity, and 0.828 and 0.866 for calcium and hardness,
respectively. Therefore, it can be considered that the smart
electronic tongue presented the ability to predict the concen-
tration of these substances.

In Fig. 7, the graphs obtained for the physicochemical
parameters of residual chlorine, chlorides, magnesium, and
sulfates are presented. In this case, a linear correlation can
be observed with R? values of 0.315 for residual chlorine,
0.70 for chlorides, 0.788 for sulfate content, and 0.825 for
magnesium content. The R? values obtained in the case of
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residual chlorine show low correlation, which may be due to
the fact that residual chlorine is a not stable parameter.

The instability of the residual chlorine in the water can
be caused by the volatility of the chlorine, which is highly
affected by light and high temperatures, and although the
samples were refrigerated in the sampling process, the city
of Sincelejo is a city within a tropical area that registers an
annual average temperature of 27 °C, which can affect both
the traditional chemical analyzes carried out in the reference
laboratory and the measurements carried out with the smart
electronic tongue.

As mentioned above, studies have been reported on the use
of electronic tongues for water analysis in which the correla-
tion coefficients are lower than those obtained in this work.
However, the strict comparison of the results obtained be-
comes inaccurate because the analytes (analytical parame-
ters), sample types, and nature of the in situ analytical pro-
cedure on which this work focuses are different from those
reported by other authors (Gutiérrez-Capitan et al., 2019;
Carbo et al., 2018).
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Figure 7. Regression models of physicochemical parameters (residual chlorine, chlorides, magnesium, and sulfates) generated by smart

electronic tongue and traditional methods of chemical analysis.

4 Conclusions

The monitoring of the quality of drinking water through de-
vices capable of providing information quickly, at low cost,
and that allow measurements to be carried out in situ can help
improve the quality of life and health in remote populations.
This work evaluated the application of a portable smart elec-
tronic tongue, made with a PPy sensor array, a multipoten-
tiostat controlled by a smartphone as a drinking water mon-
itoring device. The results of the study allowed to conclude
that the voltammetric signals registered by the sensor array
of the smart electronic tongue in samples of drinking water
showed cross sensitivity, that is to say, each sensor in the
array registered a different signal against one drinking wa-
ter sample. Also, the signals of the recorded drinking water
samples were different from each other, constituting in this a
pattern or “fingerprint” of each analyzed sample. Each mea-
surement took about 4 min to carry out, which represents a
reduced time when compared with the traditional methods of
chemical analysis used in the physicochemical characteriza-
tions of water samples.

Drink. Water Eng. Sci., 15, 25-34, 2022

This behavior allowed, through the application of artifi-
cial neural networks for principal components analysis, to
discriminate between drinking water samples, a fact that re-
flects a good discrimination capacity of the smart electronic
tongue. The results obtained with the analysis of the 22 sam-
ples and their replicas showed discrimination capacity of the
smart electronic tongue, with reproducible discrimination re-
sults.

Also, it could be seen that the smart electronic tongue pro-
vided quantitative information of some of the physicochemi-
cal parameters in the evaluation of the quality of drinking wa-
ter. For this, the data were treated using regression models,
with the aim of extracting quantitative information from the
signals. Coefficient of determination values higher than 0.70
were established, which evidenced the capacity of smart elec-
tronic tongue to provide information on substances of analyt-
ical interest that determine the quality of drinking water.

Code availability. The code used in this work has restricted ac-
cess to the public due to confidentiality commitments.
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