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Abstract. In this research, reliability indicators of water distribution networks were evaluated under pipe failure
conditions. The case studies included two benchmark networks and one real-life water distribution network in
Iran with more hydraulic constraints. Some important reliability indicators were presented, such as resilience
index, network resilience, modified resilience index, and minimum surplus head index. GANetXL was used to
do the one-objective and two-objective optimization of the previously mentioned water distribution networks
in order to not only minimize the cost but also maximize the reliability indicators. Moreover, the results of
a statistical analysis for each pipe were used to determine the sensitive pipes that were of the most failure
probability. GANetXL is an optimization tool in the Microsoft Excel environment and works based on a genetic
algorithm. GANetXL has the capability of being linked to EPANET (hydraulic simulation software). The results
obtained clearly showed that network resilience index was poor performance when compared with the other
indexes under pipe failure conditions, especially in real-life networks that include small pipe diameters. It was
also showed that if a water distribution network was optimized only in terms of cost, then there would be an
unacceptable pressure drop at some nodes in case of pipe failure.

1 Introduction

Water distribution networks (WDNs) are designed to provide
users with a minimum acceptable level of supply in terms of
pressure, availability, and water quality at all times under a
range of operating conditions (Liserra et al., 2014; Eslami
et al., 2022). Nowadays, WDNs have become complex and
need huge investments in construction and maintenance (Fu-
jiwara and Khang, 1990). As a result, there is an avid desire
to improve their efficiency through minimizing their cost and
maximizing their benefit (Alperovits and Shamir, 1977).

Optimal WDN design is a computationally complex prob-
lem because of its nonlinear nature and the constraints
involved (Rouholamini et al., 2018). Therefore, finding a
global optimal solution is difficult if we use optimization

methods, as the nonlinearity is significant. In the last few
decades, several researchers have broadly studied the design
optimization problem of WDNs. The problems have been
solved using linear, nonlinear, and various meta-heuristic
methods. Linear and nonlinear methods were predominantly
used in the period 1960–1990 (Alperovits and Shamir, 1977;
Fujiwara and Khang, 1990; Jacoby, 1968; Lansey and Mays,
1989; Quindry et al., 1981; Watanatada, 1973). Linear meth-
ods applied to nonlinear problems have not resulted in op-
timal solutions. The nonlinear methods do not necessarily
yield a global optimum, and the final solution is depended on
the initial solution used as a starting point for the search pro-
cedure (Piratla, 2016). In addition, the use of discrete vari-
ables, specific size pipe diameters, limits the quality of the

Published by Copernicus Publications on behalf of the Delft University of Technology.



14 A. Moghaddam et al.: Evaluation of hydraulic reliability in water distribution networks under pipe failure

optimal solution obtained. These limitations led to the em-
ployment of meta-heuristics that use stochastic optimization
methods.

Murphy and Simpson (1992) were the first researchers to
use a simple genetic algorithm (GA) to optimally design wa-
ter distribution systems. This model was applied to determine
the lowest cost combination of pipe diameters and rehabili-
tation actions. GA has been integrated with a hydraulics sim-
ulator to optimize the solutions by many researchers (Lip-
pai et al., 1999; Neelakantan et al., 2008; Savic and Wal-
ters, 1997; Simpson et al., 1994; Simpson and Goldberg,
1994). Vasan and Simonovic (2010) recently applied a dif-
ferential evolutionary (DE) algorithm, which is an improved
GA. The major difference between GA and DE is that GA re-
lies on crossover, a mechanism of probabilistic exchange of
information among solutions to create better solutions, while
DE uses mutation as the primary search mechanism (Vasan
and Simonovic, 2010). DE uses a uniform crossover that can
take child vector parameters from one parent more often than
from the other one. It is said that GA, most of the time, suc-
ceeds in finding the global optimum or at least arriving at
somewhere very close to it. More importantly, GA is capa-
ble of handling discrete optimization (as pipe diameters are
discrete; Savic and Walters, 1997).

Many other optimization algorithms have been used in the
optimal design of water distribution systems (Tayfur, 2017).
Loganathan et al. (1995) and Cunha and Sousa (1999) ap-
plied simulated annealing for the optimal design of water
distribution systems. Geem et al. (2002) developed a har-
mony search optimization approach to solve network de-
sign problems, while Eusuff and Lansey (2003) developed
the shuffled frog leaping algorithm. Maier et al. (2003) ap-
plied the ant colony optimization approach and improved
GA both in terms of computational efficiency and its abil-
ity to find nearly optimal solutions. Baños et al. (2007) an-
alyzed the performance of memetic algorithms for the opti-
mal design of looped water distribution systems and demon-
strated that it works well for problems of a large scale. Mo-
han and Babu (2009) proposed using a heuristic-based ap-
proach called a heuristics-based algorithm (HBA) to identify
the lowest cost combination of pipe diameters. They demon-
strated that the HBA is capable of identifying the lowest cost
combination of pipe diameters with fewer numbers of eval-
uations. Moghaddam et al. (2018) applied a simple modified
particle swarm optimization (SMPSO) to minimize the cost
of water distribution networks. SMPSO then used a novel
factor to decrease the inertia weight of the algorithm in pro-
portion with simulation time to facilitate both global and lo-
cal search. A literature review shows that stochastic mod-
els, particularly the GA types, give better results than linear
and nonlinear optimization models (Pandit and Crittenden,
2012).

Objective function is important in optimizing the design of
distribution systems. The main negative aspect of the single-
objective constrained formulation is that it does not effec-

tively set up a tradeoff between the cost and reliability/ro-
bustness of a design (Todini, 2000). Reliability can be con-
sidered as the ability to provide an adequate supply under
both usual and unusual conditions (Farmani et al., 2005),
including demand uncertainty, pipe failure, etc. One of the
most used reliability criteria is the concept of resilience in-
dex, suggested by Todini (2000), which is a measure of the
ability of the network to handle failures and is related indi-
rectly to system reliability. Several suggestions were made to
modify the resilience index introduced by Todini (2000; Far-
mani et al., 2005; Jayaram and Srinivasan, 2008; Prasad and
Park, 2004; Raad et al., 2010; Reca et al., 2008; Baños et al.,
2011; Greco et al., 2012; Pandit and Crittenden, 2012).

Subsequently, a genetic algorithm technique was used in
this research as a part of GANetXL (Savić et al., 2011).

GANetXL was used as the optimization tool in this re-
search. GANetXL has been developed by the Center for Wa-
ter Systems at the University of Exeter as an addon in Mi-
crosoft Excel (Miri and Afshar, 2014; Peirovi et al., 2020). It
is a common optimization tool with a spreadsheet-based in-
terface for solving both single-objective and multi-objective
optimization problems (Savić et al., 2011). The primary ad-
vantage of GANetXL is its capability for easy integration
with EPANET via Visual Basic. GANetXL incorporates GA
for single-objective and NSGA-II for multi-objective opti-
mizations (Deb et al., 2002). In addition, it has the capability
to apply penalty functions. GANetXL is well suited for solv-
ing multi-objective optimization problems (Mala-Jetmarova
et al., 2014). There are a few applications of GANetXL in
water systems, which include the development of a model for
the optimal management of groundwater contamination (Far-
mani et al., 2009, 2005) and the multi-objective optimization
of water distribution systems (Mala-Jetmarova et al., 2015;
Piratla, 2016; Piratla and Ariaratnam, 2012). GANetXL was
used to optimize two benchmark networks from the literature
(two-loop and Hanoi water networks) in two different con-
ditions, including single-objective (cost) and two-objective
(cost and reliability criteria) optimizations. Afterwards, once
the solutions were obtained, the performance of the proposed
resilience index, network resilience, modified resilience in-
dex and minimum surplus head index was discussed. Finally,
as the results obtained for the benchmark networks were
satisfactory, GANetXL was used to design a real-life water
network in Iran, where there are more hydraulic constraints
compared to the benchmark networks. Thus, it is necessary to
mention that quality issues were not addressed in this paper.

2 Material and methods

2.1 Optimization model for WDN design

In this paper, WDNs were optimized with pipe diameters
as decision variables. Cost was considered as the objective
function that must be minimized (Eq. 1), and the reliability
criteria were modeled in the form of a two-objective function
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(Eq. 2).

Minf1 =
∑N

i=1
ciDi × li (1)

Maxf2 = Reliability factor, (2)

where f1 is network cost, f2 is network reliability, ci is cost
for unit length of pipe with diameter, Di length li , and N is
pipe numbers in the network.

2.2 Constraints

The constraints to the optimization problem were as follows:

1. Explicit system constraints such as the conservation of
mass of flow, conservation of energy, and conserva-
tion of mass of constituent, which all were controlled
by water network simulator software, EPANET (Mala-
Jetmarova et al., 2015; Rossman, 2000).

2. Implicit bound constraints, which include choosing pipe
diameters from a commercially available set of discrete
pipe sizes (Eq. 3), minimum and maximum pressure at
load nodes (Eq. 4), and minimum and maximum veloc-
ity in the pipes (Eq. 5).

Di ∈ {CDk}∀ik = 1,2,3, . . .,nc (3)

Hmin
j ≤Hj ≤H

max
j ,j = 1,2, . . .,nd (4)

V min
i ≤ Vi ≤ V

max
i , i = 1,2, . . .,np, (5)

where Di is the diameter of pipe i, CDk is the kth com-
mercially available pipe size, nc is the number of avail-
able pipe sizes, Hj is hydraulic head available at node
j ,Hmin

j is the minimum hydraulic head required at node
j ,Hmax

j is the maximum hydraulic head at node j , nd is
the number of demand nodes, V min

i is the minimum ve-
locity required at pipe i, V max

i is the maximum velocity
at pipe i, and np is the number of pipes.

2.3 Reliability indicators

A range of reliability criteria has been introduced to differ-
ent degrees of complexity. Usually, these criteria give some
suggestion of the ability of a WDN to handle changing con-
ditions and are straightforward to analyze, so they are prac-
tical for optimization studies that compare the performance
of a network design. This section presents the definition of
the key criteria and their derivatives and their advantages and
disadvantages.

2.3.1 Resilience index (Ir)

Todini’s (2000) resilience index is a popular surrogate mea-
sure within the WDN research field. It considers surplus hy-
draulic power as a proportion of available hydraulic power.
The resilience index, Ir, is measured in the continuous range

of [0–1] (for feasible solutions of Hmin
j ≤Hj ) and is formu-

lated as follows (Todini, 2000):

Ir =

∑nn
j=1qj (Hj−Hmin

j )∑nr
k=1QkHk +

∑np
i=1Pi/γ −

∑nn
j=1qjH

min
j

, (6)

where nn is the number of supply and demand nodes, nr is the
set of supply nodes (reservoir/emptying tanks), np denotes
the number of pumps,Hj is the available head at supply node
j , Hmin

j represents the required head at supply node j , qj is
the demand at node j , Qk is the supply at input node k, Hk
is representative of the head associated with the input node
k, Pi is the power of pump i, and, finally, γ is the specific
weight of water. The maximization of the resilience index
improves the ability of a pipeline network when encountering
failure conditions.

2.3.2 Network resilience (In)

Prasad and Park (2004) introduced another reliability mea-
sure called network resilience (In), which incorporates the ef-
fects of both surplus power and reliable loops. Reliable loops
can be ensured if the pipes connected to the same node do not
vary greatly in diameter. If D1j , D2j , . . . , then Dnpj (where
D1j ≥D2j ≥ . . .≥Dnpj) are the diameters of the np pipes
connected to node j , and the uniformity of that node is given
by Eq. (7), as follows:

Cj =

∑np
i=1Dij

np×maxDij
, (7)

where npj is the number of pipes connected to node j . The
value of Cj is equal to 1 if the diameter of the pipes con-
nected to the same node are the same, and Cj < 1 if the pipes
connected to a node have different diameters. For nodes con-
nected to only one pipe, the value of Cj is taken to be 1.

In =

∑nn
j=1Cjqj (Hj−Hmin

j )∑nr
k=1QkHk +

∑np
i=1Pi/γ −

∑nn
j=1qjH

min
j

. (8)

Theoretically, the value of the network resilience may vary
between 0 and 1. However, for real-world systems, it never
attains a value of 1, since imposing the same diameter to all
pipes in a network need not always provide a Pareto optimal
solution in cost-In space, as In is a measure of the combined
effect of surplus power and nodal uniformity.

2.3.3 Modified resilience index (MRI)

Jayaram and Srinivasan (2008) proposed a modified re-
silience index (MRI), which theoretically overcomes the
drawback of Todini’s (2000) resilience index when evaluat-
ing networks with multiple sources. In contrast to Todini’s
(2000) resilience index, the value of the modified resilience
index is directly proportional to the total surplus power at the
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demand nodes. Equation (9) describes MRI, which only con-
siders the solutions with pressures equal to or higher than that
required in all nodes. While Todini’s (2000) Ir and Prasad’s
(2004) In take values up to a maximum of 1, the MRI of Ja-
yaram and Srinivasan (2008) can be greater than 1 (Baños et
al., 2011).

MRI=

∑nn
j=1qjHj−H

min
j∑nn

j=1qjH
min
j

. (9)

2.3.4 Minimum surplus head index (Im)

In a WDN, a minimum surplus head, Im, is defined as the
lowest nodal pressure difference between the minimum re-
quired and observed pressure and is formulated as follows:

Im =min
{
Hj−H

min
j

}
j = 1,2, . . .,nn. (10)

Maximization of the available surplus head at the most de-
pressed node to some extent improves the reliability of a net-
work (Prasad and Park, 2004).

2.4 GANetXL

In this paper, GANetXL was employed in the following two
steps: it was used in the first step for a single-objective op-
timization based on GA and in the second step for two-
objective optimization based on NSGA-II. GA and NSGA-
II parameters such as population size, the number of gener-
ations, selection method, crossover and mutation operators,
crossover and mutation probability, and the type of algo-
rithm were tested, and reasonably well-performing param-
eters were selected for final optimization runs (see the Sup-
plement).

3 Results and discussion

In total, three example applications were studied: the two-
loop (Alperovits and Shamir, 1977), Hanoi (Fujiwara and
Khang, 1990), both of which were the benchmark networks,
and a real-life case study in Iran.

3.1 Example 1: the two-loop network

The two-loop network was originally presented by Alper-
ovits and Shamir (1977). The network consisted of seven
nodes and eight pipes with two loops and was fed by grav-
ity from a reservoir with a 210 m fixed head. The minimum
pressure head requirement of the other nodes was 30 m above
the nodal elevations.

In the first step, as a result of single-objective optimization
of the two-loop network using GA technique in GANetXL,
the minimum cost obtained was USD 419 000, with 35 000
number of function evaluations (NFEs), which was the same
as the minimum costs obtained by GA (Savic and Walters,

1997), simulated annealing (SA; Cunha and Sousa, 1999),
shuffled frog leaping algorithm (SFLA; Eusuff and Lansey,
2003), harmony search (HS; Geem, 2009), and scatter search
(SS; Lin et al., 2007), with 250 000, 25 000, 11 323, 5000,
and 3215 NFEs, respectively.

As a result, minimum cost was USD 419 000 for a one-
objective optimization of this network, using GANetXL af-
ter 1000 generations that were equal to the minimum costs
obtained by GA, SA, SFLA, HS, and SS.

In the second step, Fig. 1a–d show the obtained Pareto
front for a two-objective optimization of two-loop network
using NSGA-II in GANetXL, considering Ir, In, MRI, and
Im as the second objective function, respectively. All of the
solutions in this Pareto front were feasible (and all the net-
work constraints are satisfied). As it is observed, the cost
changes in the range of USD [0.424× 106–4.400× 106] and
Ir, In, MRI, and Im criteria change in the ranges [0.338–
0.903], [0.287–0.903], [0.040–0.107], and [0.122–12.856],
respectively. The range of numbers presented was based on
the minimum and maximum values of the solutions presented
in the graphs. The lowest and the highest point on the Pareto
front in each of the charts were the criteria for deriving the
range of reliability indices and the cost range. In the cost
range of USD [0.424× 106–1× 106], the cost-In Pareto front
showed more and varied solutions in comparison to other
graphs. However, with the increase in cost, non-dominated
solutions decreased, and the current continuity in Pareto front
disappears while cost-Ir (Fig. 1a) and cost-MRI (Fig. 1c)
Pareto fronts had a better performance. In the cost-Im graph
(Fig. 1d), the variety of obtained solutions in the lower and
upper bound of Pareto front was lower than other graphs.

Figure 2 shows the surplus pressure of the minimum pres-
sure head requirement in the nodes of two-loop network for
solutions with maximum reliability criteria and minimum
cost. As observed, the surplus pressure of the nodes in the
solutions with minimum cost was lower than the solutions
of maximum reliability criteria (Ir, In, MRI, and Im). Also,
with the design based on single-objective function (minimum
cost), the surplus pressure was closer to the minimum al-
lowed pressure in nodes 3, 6, and 7, showing that these nodes
were the critical nodes of the network. As a result, if the two-
loop network was designed only based on the minimum cost
in critical periods such as pipe failures, then there would be
problems or issues at these nodes.

The reliability evaluation should be analyzed under all fea-
sible extreme conditions. Failure of multiple pipes and the
failure of the reservoir connection line during a firefight-
ing event and/or power or pumping station failures should
be evaluated simultaneously. Although an infinite number
of failure scenarios were likely, the probability of simulta-
neous failures in multiple pipes was too low (Tabesh et al.,
2001). Pipe failure independency can be assumed (Su et al.,
1987), and any likely dependency will be negative. For exam-
ple, if a pipe failure occurs in the network, the pressure will
decrease, and consequently, the probability of another pipe
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Figure 1. Pareto front of two-objective function optimization of the two-loop network: (a) cost-Ir, (b) cost-In, (c) cost-MRI, (d) cost-Im.

Figure 2. Surplus pressure of nodes in the two-loop network for solutions of maximum reliability criteria and minimum cost.
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failure will decrease as well. However, in case the system is
a large-scale WDN, the influence of pressure might not be
significant. Other pipe failure reasons, such as damages or
traffic loading, may lead to pipe failures that are completely
independent events (Shafiqul Islam et al., 2013).

In this paper, to evaluate reliability of the candidate so-
lutions of maximum Ir, In, MRI, and Im criteria, the nodal
pressures were investigated under pipe failure conditions.

3.2 Example 2: the Hanoi network

The Hanoi network in Vietnam, first presented by Fujiwara
and Khang (1990), was a new design, as all-new pipes were
selected. The network consists of 32 nodes and 34 pipes or-
ganized in three loops. The system was gravity fed by a sin-
gle reservoir. The network details are given in Fujiwara and
Khang (1990). The minimum required pressure head for all
nodes was 30 m, and the elevation for all nodes was zero.
There were six available pipe diameters to be selected for
each new pipe, and the pipe cost per meter for the six avail-
able pipe diameters had been listed in previous studies (Savić
et al., 2011; Atiquzzaman and Liong, 2004; Zecchin et al.,
2006; Pant and Snasel, 2021).

In the first step, as a result of single-objective optimization,
the GA method in GANetXL obtained a minimum cost of
USD 6.097× 106 with 100 000 NFEs for this network, while
in previous research the methods of GA (Savic and Walters,
1997), ant colony optimization (ACO; Zecchin et al., 2006),
and shuffled complex evolution (SCE; Atiquzzaman and Li-
ong, 2004) reported costs of USD 6.195 million, USD 6.134
million, and USD 6.22 million, with 1× 106, 25 402, and
85 571 NFEs, respectively.

In the second step, Fig. 3a–d show non-dominated so-
lutions of the Hanoi network which, when calculated by
NSGA-II considering minimum cost versus maximum re-
liability criteria and all of the solutions in the Pareto
front, was feasible. As observed in Fig. 4, the minimum
values of Ir, In, MRI, and Im are 0.228, 0.256, 0.555,
and 0.090, and the maximum values were 0.353, 0.353,
0.825, and 19.916, respectively. Cost values change in a
range of USD [6.251× 106–10.791× 106] for cost-Ir and
in USD [6.584× 106–10.969× 106] for the cost-In space,
showing that the increase in cost-In to cost-Ir was due to the
Cj factor in the formula (Eq. 8), which causes uniformity di-
ameters in the design phase. In this example, the monotony
and variety of represented solutions were observed in all
Pareto fronts; the reason could be found in the increase in the
network size and possible solutions for the network design.

Figure 5 shows the surplus pressure in comparison with
the minimum allowed pressure in the nodes of the Hanoi net-
work for solutions of the maximum reliability criteria and
minimum cost. In the cost-based optimization, surplus pres-
sure in node nos. 13, 30, and 31 was less than 1 m, which
shows that these nodes were the most critical ones of this net-
work. Ir, In, and MRI criteria have similar performance for

all the nodes, but the Im criterion determines more surplus
pressure for most of the nodes compared to other criteria in
this network and unlike the two-loop network.

3.3 Example 3: the real-life network

The real-life WDN was located in Iran, and it had 37 pipes,
24 nodes, and a reservoir with a 962 m fixed head (Fig. 7).
The design purpose of this network was municipal water sup-
ply to the city and improving the existing condition of the
WDN (Moghaddam et al., 2020). For this purpose, a series of
pipes which had diameters more than 100 mm were used for
future conditions. For designing this network, polyethylene
pipes (PE 80) with a Hazen–Williams coefficient of 130 were
used. The nodes and pipes characteristics are presented in
Moghaddam et al. (2020). In the design of the network, node
pressure and velocity constraints were between 14–60 m and
0.2–2 m s−1, respectively (Department of Technical Affairs,
Ministry of Energy, 2013). There were more constraints in
this example than in the other ones.

In the first step, as a result of single-objective optimization
using GA in GANetXL, the minimum cost was estimated at
7.54× 108 Rials with 100 000 NFEs, which shows a cost de-
crease of 46.14 % in comparison to the solution of the con-
sultant company with 14× 108 Rials (Rasekh et al., 2010).

In the second step, the results of Fig. 5a–d show that the Ir,
MRI, and Im criteria had a better performance than the In cri-
terion for this network in terms of non-dominated solutions.
All three of these criteria had similar solutions of maximum
and minimum cost in the Pareto front. All of the solutions in
the Pareto front (Fig. 5) which were obtained by NSGA-II are
feasible and satisfied the velocity and pressure constraints.

The results shown in Fig. 6 demonstrate that in the cost-
based optimization, the surplus pressure in the node nos. 13
and 23 was less than 1 m, which explains that these nodes
were the most critical ones in the network. Ir and MRI cri-
teria had similar and more successful performance compared
to Im in terms of the surplus pressure for all the nodes in
the network. In had a smaller capability than other criteria to
create surplus pressure in the network.

The results of the investigations in Fig. S4 (see the Sup-
plement) show that only the failure in pipe no. 18 can influ-
ence the pressure nodes. Consequently, this pipe was one of
the most sensitive pipes in this network. However, a reliabil-
ity performance in the failure conditions was similar to the
no-failure conditions in Fig. 7. Finally, for this network that
includes a low diameter in existing pipes, In did not have a
suitable performance because making the uniformity in the
pipes connected to a node leads to a decrease in the diame-
ter of new pipes. Thus, the capability of the surplus pressure
decreased due to the increase in head loss in the pipes.

Figure 7 shows the velocity variations in the pipes for the
solutions with minimum cost and maximum Ir, MRI, and Im
criteria obtained using GA and NSGA-II in GANetXL. As
observed, when the cost was the basis for the design and op-
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Figure 3. Pareto front of two-objective function optimization of the Hanoi network: (a) cost-Ir, (b) cost-In, (c) cost-MRI, and (d) cost-Im.

Figure 4. Nodal surplus pressure of Hanoi network for solutions of maximum reliability criteria and minimum cost.
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Figure 5. Pareto front of the two-objective function optimization of the real-life network: (a) cost-Ir, (b) cost-In, (c) cost-MRI, and (d) cost-
Im.

Figure 6. Surplus pressure of the real-life WDN for solutions of maximum reliability criteria and minimum cost.
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Figure 7. Velocity variations in pipes for the solutions of minimum cost and maximum Ir, MRI, and Im criteria.

timization of the real-life network, the velocity variation was
high in the pipes. This can lead to some issues in the network.
But in the presented solutions with maximum reliability cri-
teria (Ir, MRI, and Im), velocity variations were not only low
but almost uniform.

4 Conclusions

In this paper, the performance of a few reliability criteria was
evaluated when applying them to two benchmark (two-loop
and Hanoi) and one real-life (in Iran) networks. Both the ex-
isting pipes and hydraulic constraints were considered in the
study in which GANetXL was used as the optimizer. The
optimizations were performed, taking into account two dif-
ferent objective functions including a cost and reliability.

The results of the cost-oriented optimization showed that
the solutions proposed by GANetXL for case study networks
give solutions that were either less expensive than or as the
same as the ones from the literature. In order to investigate
the solutions with maximum values of Ir, In, MRI, and Im
criteria and finding sensitive and important pipes with the
most probability of failure in the network, a statistical anal-
ysis of single-objective optimization was used. The results
showed that Ir, MRI, and Im criteria had a better performance
than In under failure conditions, especially in real-life net-
works that include the existing pipes with a small diameter.
If a WDN was only optimized based on cost, then it would
be difficult to overcome losses in pipe failure conditions and
pressure supply of nodes.
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