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Abstract. The design of a water network involves the selection of pipe diameters that satisfy pressure and
flow requirements while considering cost. A variety of design approaches can be used to optimize for hydraulic
performance or reduce costs. To help designers select an appropriate approach in the context of gravity-driven
water networks (GDWNs), this work assesses three cost-minimization algorithms on six moderate-scale GDWN
test cases. Two algorithms, a backtracking algorithm and a genetic algorithm, use a set of discrete pipe diam-
eters, while a new calculus-based algorithm produces a continuous-diameter solution which is mapped onto a
discrete-diameter set. The backtracking algorithm finds the global optimum for all but the largest of cases tested,
for which its long runtime makes it an infeasible option. The calculus-based algorithm’s discrete-diameter so-
lution produced slightly higher-cost results but was more scalable to larger network cases. Furthermore, the
new calculus-based algorithm’s continuous-diameter and mapped solutions provided lower and upper bounds,
respectively, on the discrete-diameter global optimum cost, where the mapped solutions were typically within
one diameter size of the global optimum. The genetic algorithm produced solutions even closer to the global op-
timum with consistently short run times, although slightly higher solution costs were seen for the larger network
cases tested. The results of this study highlight the advantages and weaknesses of each GDWN design method
including closeness to the global optimum, the ability to prune the solution space of infeasible and suboptimal
candidates without missing the global optimum, and algorithm run time. We also extend an existing closed-form
model of Jones (2011) to include minor losses and a more comprehensive two-part cost model, which realisti-
cally applies to pipe sizes that span a broad range typical of GDWNs of interest in this work, and for smooth and
commercial steel roughness values.

1 Introduction

A gravity-driven water network (GDWN) is commonly used
to deliver potable water from a source at a high elevation,
such as a natural spring or reservoir, to households or pub-
lic tap stands (Fig. 1). When feasible, gravity-driven water
networks are attractive in comparison to pumped networks
because of their simplicity and lower capital, operational,
and maintenance costs. In addition, in many locations where
GDWN are considered, there may be little or no access to
reliable grid-based electrical power for pumps. To improve
reliability, networks may be designed with loops or multiple
water sources, although often material cost considerations re-
strict attention to single-source branched networks.

Water networks are modeled as a collection of nodes, each
representing a point of water demand or supply, which are
connected with links representing pipes. The geometrical
layout of the site is known and fixed, including water source
and demand locations and elevations of all nodes. For the
present work, design flow rates are determined from com-
munity survey data, which are extrapolated for future pop-
ulation growth. Networks in this category are referred to as
“demand-driven” designs. Bhave (1978, 1983) refers to these
as “Q-specified” designs. Thus, to design a network of this
type, pipe diameters for each link must be chosen such that
acceptable but arbitrary minimum (positive) pressure heads
are maintained at each node given the design flow rate at
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Figure 1. Element schematic of a GDWN.

the node. Furthermore, application of the energy equation to
each link in the network demonstrates that the design prob-
lem is nonunique; i.e., choosing different pressure heads at
the nodes will result in a different pipe diameter solution
for the network, and thus different network costs. Minimiz-
ing network cost will produce a unique solution to the de-
sign problem, i.e., unique link diameters and nodal pressure
heads.

In practice, gravity-driven water networks are commonly
designed by a marching method, where diameters for each
link of the network are chosen sequentially. After selecting a
reasonable diameter for each link, the designer calculates the
pressure head at the link outlet, and proceeds to the next link
if this result is acceptable. In this way, the designer marches
through the network until all pipe diameters have been se-
lected. This method produces a feasible solution, but not a
cost optimized one. As noted by Bhave (2003), cost savings
of 20–30 % can result from the use of optimization tech-
niques. In developing regions, the cost of a water network
can be prohibitive, adding to the importance of optimizing
network design.

Within the provided framework, the global optimum can
be found through an exhaustive search of the solution space,
known as complete enumeration, although this is infeasi-
ble when considering networks with many links and diam-
eter choices (Kadu et al., 2008; González-Cebollada et al.,
2011). To reduce the computational time required by enu-
meration, authors have proposed various partial enumeration
methods which prune the search space (Kadu et al., 2008),
although some of these techniques may remove the global
optimum (Simpson et al., 1994). The most common types of
algorithms that have been applied to optimize water network
design include traditional deterministic methods, heuristic
methods, metaheuristic methods, multi-objective methods,
and decomposition methods (Zhao et al., 2016).

Deterministic methods include linear programming (LP),
dynamic programming, and nonlinear programming (NLP),

and typically involve rigorous mathematical approaches
(Zhao et al., 2016). A brief overview and comparison of
these algorithms is given in Kansal et al. (1996), who use
a single-part cost correlation for metric pipe diameters be-
tween 100 and 350 mm. Linear programming techniques
have relatively low computational complexity and allow each
link to be composed of two diameters, called a split-pipe so-
lution, although these may not always be practical to im-
plement (Bhave, 1983; Kessler and Shamir, 1989; Swamee
and Sharma, 2000; Samani and Mottaghi, 2006). LP can also
get stuck in a local optimum (Zhao et al., 2016), although
combining LP with metaheuristic techniques can help with
the problem’s non-smoothness properties (Krapivka and Ost-
feld, 2009). Dynamic programming has been used by Yang et
al. (1975) and Martin (1980) to optimize networks in stages.
This approach begins at the discharge nodes, proceeding to
select feasible diameters and joints for upstream stages and
storing these partial candidates in memory until the source
node is reached. At this point, the algorithm reviews the fea-
sible segment design options and selects a combination of
stage solutions producing the lowest cost overall solution.
This method, however, requires the designer to allow a rel-
atively narrow range for the design pressure of each node, or
otherwise store a large set of feasible candidate solutions in
memory and also allow adjoining branches to arrive at differ-
ent heads at the same node.

Nonlinear programming, a calculus-based method, deals
with each link’s diameter as a continuous variable. Using
Lagrange multipliers and a one-part, pipe-cost model with
minor-lossless flow, Swamee and Sharma (2000) developed
systems of equations for both continuous and discrete pipe
diameters for branch networks, assuming a constant fric-
tion factor. When solved, the solution gives diameter val-
ues that minimize distribution main cost, not network cost.
In carrying out the solution, iteration is required to update
the value of the friction factor. For the discrete diameter
case, large computational times were noted by Swamee and
Sharma because of the stiffness of the mathematical system.
Cases where one or more nodal pressure heads are not ac-
ceptable need to be treated manually by the designer in var-
ious ways as discussed by the authors. For branching net-
works, Jones (2011) showed that by restricting the focus to
smooth-turbulent (turbulent flow in a smooth pipe) minor-
lossless flow, and the use of a one-part, pipe-cost model, a
simple nonlinear algebraic equation for each internal node
in the distribution main could be developed. The develop-
ment of this algorithm, as well as solution methodology, dif-
fers from that of Bhave (1978), which assumes constancy in
several terms and thus requires iteration to solve. The Jones
algorithm has been extended in the present work to include
minor losses and rough pipe. When solved simultaneously
with the energy equation for each link, a unique solution for
all link diameters and nodal pressure head values is obtained
which produces minimum network cost, as opposed to the
distribution main cost as in Swamee and Sharma (2000). The

Drink. Water Eng. Sci., 11, 67–85, 2018 www.drink-water-eng-sci.net/11/67/2018/



I. Dardani and G. F. Jones: Algorithms for optimization of branching gravity-driven water networks 69

method of Jones also applies to serial and loop networks be-
cause of its generality.

Heuristic methods follow specific rules to incrementally
build better solutions, although the rules are not strictly for-
mulated to trend towards local or global optima. An approach
by Monbaliu et al. (1990) sets all network pipes to their min-
imum size, where the pipe that has a maximum head loss
gradient is incremented to its next-highest size until all nodal
head requirements are satisfied. Similarly, an algorithm by
Keedwell and Khu (2006) selects an initial solution and itera-
tively responds to nodal head deficits and surpluses by incre-
menting or decrementing pipe sizes accordingly until a fea-
sible solution is found. Suribabu (2012) proposed a heuristic
that identifies pipes to increment or decrement in size based
on flow velocity and alternative metrics such as proximity to
the source node, achieving acceptable cost results with com-
putational efficiency. While these algorithms are typically
computationally efficient, they do not guarantee a global op-
timum.

Metaheuristic optimization methods allow for a set of so-
lutions to evolve through random processes that are guided
with an objective function which rewards low network costs
and penalizes hydraulic insufficiencies. Examples include
evolutionary algorithms, which are most commonly genetic
algorithms (Krapivka and Ostfeld, 2009; Simpson et al.,
1994; Kadu et al., 2008; Prasad and Park, 2004), simulated
annealing (Vasan and Simonovic, 2010; Tospornsampan et
al., 2007), ant colony optimization (Maier et al., 2003), and
differential evolution (Vasan and Simonovic, 2010). As re-
viewed by Nicklow et al. (2010), evolutionary algorithms are
an emerging popular alternative to the deterministic meth-
ods, and they offer the opportunity to accommodate unique
constraints and multiple design objectives. The main chal-
lenges for evolutionary algorithms are the difficulty of incor-
porating constraints into objective functions, the optimum se-
lection of parameters, and a relatively large amount of com-
putational effort. In addition to optimizing for cost, multi-
objective methods, often based on evolutionary algorithms,
allow the designer to choose from a Pareto optimal front
of objectives, such as cost and reliability (Prasad and Park,
2004). In addition to water network design, metaheuristic al-
gorithms have been used for a range of problems in water
resources engineering, such as rainfall and runoff modeling
(Taormina and Chau, 2015).

Decomposition methods involve the partitioning of net-
works into smaller sub-networks which are each optimized
using one of many types of techniques and then combined
into an overall solution. In some cases, the loops in the sub-
networks are removed, producing branching trees which are
then optimized individually. Techniques used to optimize the
sub-networks can involve multiple methods, including lin-
ear programming (Saldarriaga et al., 2013) and differential
evolution (Zheng et al., 2013), with a later stage optimizing
the network as a whole using the sub-network solutions as
inputs. Note that another distinct use of the term “decompo-

sition” refers to the approach of iteratively solving “inner”
and “outer” mathematical problem formulations, and has
been used in the literature by Krapivka and Ostfeld (2009)
who traces its use in this context back to Alperovits and
Shamir (1977).

In the present study, we present three algorithms, each
from one of three major categories of methods applied to
the cost optimization of water distribution networks, and
compare their performance on five cases adapted from real
GDWNs. These algorithms include (1) the calculus-based
(CB) optimization model of Jones (2011), an NLP method;
(2) backtracking (BT), a partial enumeration method; and
(3) a genetic algorithm (GA), a metaheuristic method. Ma-
jor distinguishing features of these algorithms include their
working use of continuous diameters (CB) versus discrete
diameters (BT and GA), their deterministic (CB and BT) ver-
sus stochastic (GA) search process, and their relative scala-
bility as better (CB, GA) and worse (BT) for larger networks.
In terms of their ability to find a global optimum solution for
the problem formulation, CB finds a global optimum for con-
tinuous diameters but cannot guarantee a discrete diameter
global optimum in its mapped solution, BT can guarantee a
discrete global optimum, and GA cannot guarantee an opti-
mum. For a direct comparison of techniques, the pipe costs
used for all algorithms are found by interpolating a two-part
cost formula based on a curve fit of real cost data for avail-
able diameter values. The three algorithms are tested against
networks adapted from field data on five actual GDWNs in-
stalled in Panama, Nicaragua, and the Philippines.

Within the broader context of water network problem for-
mulations, this paper is concerned with finding cost-optimal
single-diameter solutions to branching water distribution net-
works with steady-state demand flows and pre-specified pipe
locations. By implication of being gravity-driven, the prob-
lem does not involve the use of pumping stations. This prob-
lem formulation is directly applicable to typical gravity-
driven water networks, and is also useful for multi-objective
algorithms, the consideration of sub-networks in a decompo-
sition technique, pumped networks, and looped system opti-
mization, which can involve reformulating the problem into
a branching configuration.

The results of this study highlight the advantages and
weaknesses of each GDWN design method including close-
ness to the global optimum, the ability to prune the solution
space of infeasible and suboptimal candidates without miss-
ing the global optimum, and also computational time. We
present two pre-processors which discrete-diameter search
methods can use to reduce the search space without prun-
ing the global optimum. To the authors’ knowledge, this is
the first implementation of “pre-processor 1” in enumeration
methods and the first implementation of “pre-processor 2” in
any water network design method. We also extend the Jones
closed-form model to include minor losses, a more compre-
hensive two-part cost model, which realistically applies to
pipe sizes that span a broad range typical of GDWNs of inter-
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est in this work, and for smooth and commercial steel rough-
ness values.

2 Problem formulation

Branching networks are considered (Fig. 1), where all
branches connect a distribution main node with a delivery
node, shown as tap stands or houses. For each link in a
network of NL links, pipe length (L) and the net elevation
change (1z) are considered known and fixed. Steady-state
flow rates (Q) are prescribed for each link based on the de-
mand flow data at delivery nodes. As noted above, demand
flows are determined by community surveys and extrapolated
in time to quantitatively account for population growth. Mi-
nor losses are accounted for through a minor loss coefficient
K or a dimensionless equivalent pipe length, (Le/D, or in
symbol form, LebyD), where Le is the pipe length of diame-
ter D whose frictional loss results in the corresponding mi-
nor loss. An optimal solution is obtained by selecting pipe
diameters (D) from a set of commercially available diame-
ters such that the network’s material cost is minimized. With
ND choices of diameters for NL links, the problem has NNL

D
candidate solutions.

For all nodes, pressure head, h, is greater than or equal
to a chosen minimum, hmin. The value for hmin is selected
to eliminate possible leakage of contaminated ground water
into the network should the operating conditions change in an
unanticipated way. The change in pressure head, 1h, across
each link is calculated with the energy equation for pipe flow
as follows:

1h=−1z+

(
α+K + f

(
L

D
+LebyD

))
8Q2

π2gD4 , (1)

where for each link, α is the kinetic energy correction fac-
tor and f is the Darcy friction factor, calculated with the
Colebrook–White equation (Colebrook and White, 1937) or
Churchill correlation (Churchill, 1977), and g is acceleration
of gravity. The kinetic energy correction factor, α, is consid-
ered only in the first link, where acceleration from a zero-
velocity source is sometimes non-negligible for the smallest
of GDWNs that have been encountered. Thus,

α =

{
2 Re≤ 2300
1.05 Re> 2300,

where Re is the Reynolds number for pipe flow, 4Q/πνD,
and ν is the kinematic viscosity of water. The possibility of
laminar flow (Re≤ 2300) is permitted since branches from
the smallest GDWN observed in practice have been in this
regime.

The pressure upper bound is not incorporated into the op-
timization process. Worst-case pressure conditions occur un-
der hydrostatic conditions, which are directly related to the
maximum elevation change in the network and where no flow
occurs. Therefore, before the optimization process is under-
taken, the selections of appropriate pressure ratings for the

Figure 2. Three-pipe branch network.

pipe and, if needed, break-pressure tanks are left to the cor-
rect judgment of the designer under no-flow conditions. In
addition, precautions against water hammer are left to the
designer.

3 New calculus-based algorithm

In this section we develop a new calculus-based algorithm
for pipe diameters that minimize overall pipe cost for the
network. First appearing in Jones (2011), this algorithm is
solved simultaneously with the energy equation for each link
to produce unique solutions for D and nodal pressure head
values that minimize network pipe cost, as opposed to only
the distribution main cost as in Swamee and Sharma (2000).
The method also applies to serial and loop networks but the
focus for the present work is on branching networks.

We assume continuous pipe diameters in this section; val-
ues that result from the solution of the energy equation. Map-
ping between continuous diameters and the discrete nominal
sizes, required to complete the design, will be addressed be-
low.

Consider the three-pipe network shown in Fig. 2. Pipes 1–
2, 2–3, and 2–4 meet where head h2 is unknown. Each pipe
has a prescribed volume flow rate and length and unknown
diameter D as shown. The change in elevation between the
top and bottom of each pipe is 1z, and 1h is the change in
pressure head. There is a prescribed head at each outlet for
pipes 2–3 and 2–4.

To facilitate insight, we at first assume turbulent flow
(which can be verified post-calculation if necessary) in
smooth pipe and that minor losses are negligible. Two
sources for the friction factor for smooth-turbulent flow
are considered, namely the classical Blasius equation (re-
ported in Streeter et al., 1998), f = 0.316Re−1/4, and the
Swamee–Jain correlation (Swamee and Jain, 1976), f =
0.175Re−0.1923 (though not explicitly appearing in this ref-
erence, f from the Swamee–Jain correlation is obtained by
writing it for smooth pipe and comparing this with the en-
ergy equation, where f is assumed to be in the form aRen).
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The Blasius equation has higher accuracy (2 % for low Re
and 3 % for high Re) in the range 104 < Re < 105, over which
most of the GDWNs in this work operate, compared with
the Swamee–Jain correlation of +8 %/−3 %, thus the Bla-
sius equation is chosen for this work. A combination of the
Blasius equation with the energy equation gives explicit for-
mulas for D for the three links in Fig. 2. For simplicity, and
to reduce the number of free parameters, the conditions for
pipes 2–3 and 2–4 are assumed to be identical without loss
of generality. We therefore obtain

D12 = 0.741
(
1z12+1h12

L1

)−4/19(
Q12ν

1/7

g4/7

)7/19

(2)

D23 =D24 = 0.741
(
1z23+1h23

L2

)−4/19(
Q23ν

1/7

g4/7

)7/19

.

With our assumptions and inspection of Fig. 2, 1h12 =−h2
and 1h23 =1h24 = h2−h3 = h2−h4, we furthermore ob-
tain

D12 = 0.741
(
1z12−h2

L1

)−4/19(
Q12ν

1/7

g4/7

)7/19

(3)

D23 =D24 = 0.741
(
1z23−h3+h2

L2

)−4/19(
Q23ν

1/7

g4/7

)7/19

.

The single-part pipe-cost model can be assumed to follow a
power-law relationship (Swamee and Sharma, 2008)

C = a

(
D

Du

)b
, (4)

where C is cost per unit length of pipe, a is a constant co-
efficient, b is a constant exponent, and Du an assumed unit
diameter. A more robust, two-part model, valid for a greater
range of pipe sizes than that of Swamee and Sharma (2008),
will be used below. The use of pipe material cost as the ob-
jective function was assumed because of relevance. In most
GDWNs of interest in this work, installation labor comes
from the local community and has no well-defined associ-
ated cost, such that the material cost for the network is of
prime importance. For a more general case, the economics
of a GDWN may be more encompassing and include mate-
rials, labor, operation and maintenance, depreciation, taxes,
and salvage, among others. The time value of money may
also need to be considered, which includes interest rates and
estimation of the network lifetime.

With Eq. (4) the general expression for the total cost for
the pipe material, CT, is obtained by summing over all links
ij ,

CT = a
∑
ij

Lij

(
Dij

Du

)b
, (5)

which, for the present problem, becomes

CT = a

[
L12

(
D12

Du

)b
+L23

(
D23

Du

)b
+L24

(
D24

Du

)b]

= a

[
L12

(
D12

Du

)b
+ 2L23

(
D23

Du

)b]
. (6)

The mathematical basis for a unique solution for h2 with
cost minimization is now presented. In addition to the fixed
pipe lengths, the total cost depends on the diameters for all
pipes in the network. For the case of Fig. 2, where we now
allow pipe 2–3 and pipe 2–4 to be different, we get

CT = CT (D12 (h2) ,D23 (h2) ,D24 (h2)) . (7)

Using the chain rule from the calculus, the total differential
of Eq. (7) is

dCT =
∂CT

∂D12

∂D12

∂h2
dh2+

∂CT

∂D23

∂D23

∂h2
dh2

+
∂CT

∂D24

∂D24

∂h2
dh2. (8)

The minimum value of CT is found once dCT = 0 (and once
it is verified that the second derivative of CT is positive thus
indicating that CT is indeed a minimum). Requiring this, we
obtain

0=
∂CT

∂D12

∂D12

∂h2
+
∂CT

∂D23

∂D23

∂h2
+
∂CT

∂D24

∂D24

∂h2
. (9)

The cost CT is from Eq. (5), so the derivatives like
∂CT/∂D12 in Eq. (9) are written in general as

∂CT

∂Dij
= ab

Db−1
ij

Dbu
Lij (10)

for any link ij .
The derivatives like ∂D12/∂h2 in Eq. (9) are obtained by

taking the partial derivative of the pipe diameter with respect
to the relevant pressure head in the appropriate energy equa-
tion. For the full energy equation, whereD appears in a non-
linear way in more than one location, this would be done
using numerical methods. However, if we assume minor-
lossless, smooth-turbulent flow as noted above, we can use
the energy equations like Eq. (3). We therefore obtain the
following for pipe 1–2:

∂D12

∂h2
= 0.156

(
1z12−h2

L12

)−23
19
(
ν1/7Q12

g4/7L
19/7
12

) 7
19

; (11)

for pipe 2–3, we get

∂D23

∂h2
=

− 0.156
(
1z23+h2−h3

L23

)−23
19
(
ν1/7Q23

g4/7L
19/7
23

) 7
19

; (12)

and for pipe 2–4,

∂D24

∂h2
=−0.156

(
1z24+h2−h4

L24

) 23
19

ν 1
7Q24

g
4
7L

19
7

24


7

19

. (13)
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Equations (10)–(13) are combined with Eq. (9) to produce a
single algebraic equation that depends on h2, as well as D12,
D23, and D24. Introducing D12,D23, and D24 from Eq. (3)
into this algebraic equation, we get

0=Q7b/19
12

(
1z12−h2

L12

)−(1+4b/19)

−Q
7b/19
23

(
1z23+h2−h3

L23

)−(1+4b/19)

−Q
7b/19
24

(
1z24+h2−h4

L24

)−(1+4b/19)

. (14)

The general form of Eq. (14), written at any internal node is

0=
∑
ij,in

Q
7b/19
ij S

−(1+4b/19)
ij −

∑
ij,out

Q
7b/19
ij S

−(1+4b/19)
ij , (15)

where the hydraulic gradient, Sij , is

Sij =
1zij +1hij

Lij
. (16)

In Eq. (15) the indices ij ,in and ij ,out on the summations
refer to inflows and outflows at the node (e.g., in Fig. 2,
ij ,in= 12 and ij ,out= 23 and 24). Equation (15), the new
CB algorithm proposed in this work, is written for each in-
ternal node in the network and solved simultaneously with
the energy equation for each link to obtain unique and opti-
mal values ofDij for all links and hj for all internal nodes. It
is understood that the nodal pressure heads determined from
the solution of this system must be greater than or equal to
the hmin prescribed for the network. For nodes that do not
satisfy this condition, the pressure head is set equal to hmin,
as part of the CB algorithm. Thus, hj ≥ hmin.

Minor losses using the equivalent-length method can be
included in the above developments by artificially extending
the length of the link by Le in which minor loss occurs, thus
contributing a non-zeroLebyD term in Eq. (1). We also extend
the cost model of Eq. (5) from Swamee and Sharma (2008) to
encompass two different ranges of pipe diameters having two
different coefficients a and exponents b. The link between
the two ranges starts at discrete pipe size Dco, at and below
which the cost model for the small (subscript s) pipe sizes
applies, and discrete pipe size Dco+1, at and above which
the cost model for the large (subscript l) pipe sizes applies.
The cutoff diameter, Dco is chosen by the designer based on
inspection of cost vs. diameter data. Thus,

Cij = Lij



as

(
Dij

Du

)bs

,

Dij ≤Dco

c1+ c2
Dij

Du
+ c3

(
Dij

Du

)2

+ c4

(
Dij

Du

)3

,

Dco <Dij <Dco+1

al

(
Dij

Du

)bl

,

Dij ≥Dco+1.

(17)

In Eq. (17), as and al are the coefficients for the small (desig-
nated by subscript s) and large (subscript l) pipe size regions,
respectively, and bs and bl are the exponents for the small
and large pipe size regions, respectively. A cubic spline is fit
between pipe sizes Dco and Dco+1 to complete the transition
between small and large pipe sizes. The coefficients of this
polynomial are c1, c2, c3, and c4 as seen in Eq. (17). These
coefficients are evaluated by matching the cubic polynomial
and pipe data at Dco and Dco+1 and the first derivative of

the polynomial with respect to Dij/Du to asbs

(
Dco
Du

)bs−1

at Dij =Dco and to albl

(
Dco+1
Du

)bl−1
at Dij =Dco+1. An

example of data for polyvinyl chloride (PVC) pipe and
the curve fit is shown in Fig. 3. The results of the curve
fit are as follows: Dco = 2.067 in., Dco+1 = 2.469 in.,
as=USD 1.349 m−1, bs = 1.157, al=USD 1.381 m−1,
bl = 1.344, c1=USD 237.516 m−1, c2=USD 316.125 m−1,
c3=USD 140.450 m−1, c4=−USD 20.499 m−1. It is clear
from inspection of Fig. 3 that a one-part cost model would
not have produced an acceptable curve-fit to pipe-cost data.

With the inclusion of the two-part cost model and minor
loss term, Eq. (15) becomes

0=

∑
ij,in

C′ijA
4

19
ij

(
1+ εij

) 4
19 S
−

23
19

ij

(
Q7
ij ν

g4D19
u

) 1
19

1−BA
4
19
ij ε
′

ij

(
1+ εij

)− 15
19 S
−

4
19

ij

(
Q7
ij ν

g4D19
u

) 1
19

−
∑
ij,out

C′ijA
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where B = 0.1989 and

εij =
∑
k

(
Le

D

)
k,ij

Dij

Lij
(19)

ε′ij =
∑
k

(
Le

D

)
k,ij

Du

Lij

Aij =

{
0.318, smooth pipe
0.420, steel pipe (20)

and A accounts for the effect of pipe roughness (smooth and
commercial steel). The term C′ij is the derivative of the cost
function per unit length with respect to D/Du. For the two-
part cost model from above, we obtain

C′ij =



asbs

(
Dij

Du

)bs−1

,

Dij ≤Dco

c2+ 2c3

(
Dij

Du

)
+ 3c4

(
Dij

Du

)2

,

Dco <Dij <Dco+1

albl

(
Dij

Du

)bl−1

,

Dij ≥Dco+1.

(21)
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Figure 3. PVC pipe cost from 2011 data.

Equation (18), and its simpler form Eq. (15) for minor-
lossless flow and a single-part pipe-cost model (it is easy
to show that Eq. (18) regresses to Eq. (15) for these con-
ditions), is the root of the calculus-based optimization in
this work and is applied at all internal nodes to uniquely
determine hj . Equation (18) is valid over the range of
∼ 4000 < Re <∼ 300 000. Algorithms to solve a general set
of independent, nonlinear algebraic equations using, for ex-
ample, the Levenberg–Marquardt, quasi-Newton, Newton–
Raphson, or conjugate gradient methods are available in most
commercial math packages including Matlab (1 Apple Hill
Drive, Natick, MA USA 01760) and Mathcad (http://www.
ptc.com 31 January 2018). We used the package Mathcad in
the present work. Thus, compared with an iterative solution
procedure, a solution flowchart is not relevant here.

Bhave (1978) first proposed an algorithm like Eq. (15) us-
ing slightly different notation than here. For clarity, we re-
present Eq. (15) using Bhave’s notation as

0=
∑

Q
7b/19
ij S

−(1+4b/19)
ij −

∑
Q

7b/19
jk S

−(1+4b/19)
jk ,

where the ij and jk notation are shown in Fig. 4. Index j
spans all internal nodes along the distribution main. A quanti-
tative comparison between Eq. (18) and the method of Bhave
is presented below.

4 Backtracking algorithm and genetic algorithm

Backtracking (BT) and genetic algorithm (GA) assess candi-
date solutions composed of discrete diameters from a com-
mercially available set. These candidates are represented by
a vector ofNL elements where each element corresponds to a
commercially available diameter of a network link. To reduce
the computational time associated with these evaluations, the
constraints imposed by the energy equation and cost mini-
mization may be more efficiently evaluated through lookup
tables. With fixed L, 1z, K , LebyD, and α, the change in
pressure head 1h is evaluated for all ND×NL combinations

 
 

Figure 4. Bhave (1978) index notation at an internal node, j .

of pipe diameter and link index:

1h=

 1h11 · · · 1h1NL
...

. . .
...

1hND1 · · · 1hNDNL

 . (22)

While an algorithm evaluates a candidate solution, the pres-
sure head at each node is sequentially calculated by “march-
ing” through the network. Starting with the fixed source pres-
sure head, the algorithm finds the pressure head hi for a given
node by adding the head at the upstream node, hi−1 to the
change in head for that link iL and the diameter iD under
consideration. Thus,

hi = hi−1+1h (iD, iL) . (23)

Along with the hydraulic evaluation of a candidate solution,
the cost of the partial candidate is found through the use of a
lookup table C:

C=

 C11 · · · C1NL
...

. . .
...

CND1 · · · CNDNL

 , (24)

where C(iDiL) returns the additional cost of assigning a di-
ameter with index iD to link iL. In this way, the candidate so-
lution’s hydraulic performance and cost are incorporated into
the genetic algorithm and backtracking approaches. In con-
trast to GA, the backtracking algorithm evaluates pressure
head and cost upon consideration of each partial candidate,
where GA calculates these values on full candidates as part
of the objective function.

4.1 BT and GA pre-processor 1: maximum available
diameter

To increase the efficiency of BT and GA, it is advantageous
to limit the number of pipe diameters in the available set,
especially those outside of the range of the optimal solu-
tion. For the BT algorithm in particular, larger diameters can
require considerable computational effort, since they tend
not to violate static head requirements and require multiple-
link partial candidates for the algorithm to reject them once
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their cost exceeds that of an already-found viable candidate.
Therefore, a pre-processor is used to provide a maximum di-
ameter (Dmax) that should be considered during the optimiza-
tion process. This procedure, which produces a conservative
estimate, finds the smallest diameter at which a network with
a single pipe diameter choice produces no nodes with a pres-
sure head below hmin, similar to the technique used by Mo-
han and Jinesh Babu (2009). After this diameter is found,
the next larger diameter in the set is selected as Dmax to al-
low the algorithm to select a larger than necessary diame-
ter if this is able to save cost elsewhere. It worth noting that
Kadu et al. (2008) presents another method to further prune
the search space with the critical path concept, where Don-
gre and Gupta (2011) noted the computational advantages of
having just four diameter choices per link. This method, how-
ever, may prune the global optimum and may not produce
feasible head values at intermediate nodes, as in the case of
networks with a local high point.

4.2 BT and GA pre-processor 2: adjusted minimum
pressure head

A second pre-processor adjusts the minimum pressure head
requirement for each internal node by considering the total
head required at downstream nodes. It can be recognized that,
without the use of a pump, the total head cannot increase at
nodes downstream of a given node i. Furthermore, the total
head must decline at a minimum grade that is determined by
the demand volume flow rate and the largest pipe diameter
available (Dmax) for selection. This energy constraint is uti-
lized to reduce the number of candidates to be considered
by increasing the minimum pressure head at nodes where
these rules produce a higher minimum head than the orig-
inal hmin. For example, nodes upstream of a local network
high point can have their minimum pressure head increased
beyond the normal minimum, since the pressure head must
be great enough to ensure adequate flow to the higher eleva-
tion downstream node. To begin this process, each node i is
initialized with a baseline minimum total head:

thmin,i = zi +hmin. (25)

thmin,i is thus initialized by considering only the node’s hy-
draulic requirements in isolation, i.e., without acknowledg-
ing the neighboring downstream nodes. The pre-processor
then considers updating thmin,i by checking the following
condition, which is false when the minimum pressure head
at downstream nodes produces further constraints on an up-
stream node i. Thus, for all nodes i which are upstream of
some node j , the following inequality can be evaluated:

thmin,i − thmin,j ≥ (26)(
αi−j +Ki−j + fi−j

(
Li−j

Di−j
+LebyDi−j

)) 8Q2
i−j

π2gD4
max

.

Also, consider that when flow rate Qi−j is small and Dmax
is large, the right-hand side of Eq. (26) approaches zero, rep-
resenting the simple statement that upstream total head must
always be greater than downstream total head. When the con-
dition in Eq. (26) is false, the minimum total head can be up-
dated in node i such that the maximum diameter size in link
i− j is able to meet the downstream node’s minimum total
head, or

thmin,i = thmin,j+ (27)(
αi−j +Ki−j + fi−j

(
Li−j

Di−j
+LebyDi−j

)) 8Q2
i−j

π2gD4
max

.

In this way, thmin,i may be updated for each node until the
condition in Eq. (26) is true for all nodes i with a downstream
node j connected by a single link.

After the values for thmin,i are updated, they are converted
back into minimum pressure head values by subtracting the
elevation zi from thmin,i . This pre-processor serves to nar-
row the search for viable candidate solutions by potentially
increasing the minimum pressure head. Since backtracking
and GA consider network links in the downstream direc-
tion, these algorithms are otherwise blind to future down-
stream pressure head requirements. This limitation is alle-
viated by the pre-processor, which allows these algorithms
some implicit information about what local diameter choices
will be viable for the full network solution. Note that both
pre-processors discussed will not prune the global optimum
from the solution.

4.3 Backtracking algorithm (BT)

The backtracking algorithm is a partial enumeration method
that employs a systematic search of candidate solutions to
find a global optimum. The algorithm works recursively to
incrementally build candidate solutions while checking the
candidates for hydraulic and cost acceptability. The strength
of the BT is that, upon discovery of an infeasible partial
candidate, all extensions of that candidate can be elimi-
nated from consideration. In this way, many solutions can
be pruned from the solution tree to achieve greater computa-
tional efficiency.

Two backtracking methods in the literature are those by
Gessler (1985) and González-Cebollada et al. (2011). The
algorithm proposed by Gessler proposes a pipe-grouping
strategy which speeds up the algorithm but risks pruning
the global optimum. Additionally, pipe grouping represents
its own optimization problem (Raad, 2011). The González-
Cebollada algorithm does not include such pipe-grouping
criteria, although it does halt its search after finding the first
feasible solution, thus it does not guarantee a global opti-
mum. The present study’s BT algorithm, once run to comple-
tion, does guarantee a global optimum. It operates similarly
to the method presented by González-Cebollada et al. (2011),
with the major differences being that the algorithm contin-
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ues searching once it has found its first feasible solution
and uses pre-processors 1 and 2 to further reduce the search
space. This implementation of BT, however, scales poorly
with larger network sizes and would not be appropriate for
use on large urban networks. Its appropriateness is shown
here for many of the GDWNs encountered in practice, as ev-
idenced by its use on real-world GDWN test cases in this pa-
per. Moreover, it serves as a benchmark against which other
algorithms can be compared.

BT uses two rejection criteria to discard candidate solu-
tions from further consideration. The first rejection crite-
rion is that when a candidate violates pressure head con-
straints, all candidates with equal or lesser diameter sizes can
be discarded. This condition is leveraged even more effec-
tively with pre-processor 2 above, which can increase pres-
sure heads at individual nodes by anticipating the head re-
quirements at surrounding nodes. The second rejection crite-
rion is that once a feasible candidate has been found, all other
partial candidates with a higher cost can also be discarded.
The BT algorithm further extends this second criterion by
considering that the links yet to be considered in a partial
candidate, an “extension” to the partial candidate, will cost
at a minimum that of the entire extension being composed of
the smallest available diameter.

The backtracking algorithm begins its search of the solu-
tion tree by considering the partial candidate with the small-
est diameter size assigned to the first network link. The pres-
sure head and the partial candidate cost at the outlet node
are calculated with the 1h and C lookup tables. If this par-
tial candidate meets pressure head and cost requirements,
the algorithm extends this partial candidate by assigning the
smallest diameter to the downstream link. If a partial can-
didate produces a node that is rejected on the basis of pres-
sure head, the next largest larger diameter is chosen for the
link upstream of the node. If no diameter satisfies the pres-
sure head condition, the algorithm backtracks to the upstream
link and assigns a larger diameter to the link. In this way, the
algorithm continues to extend and reject candidate solutions
until a full candidate satisfies the pressure head requirements.
Once a working solution has been found, candidate solutions
may be rejected based on cost. For each new candidate, cost
is calculated by adding the cost of diameters that have al-
ready been assigned to the cost of assigning all downstream
links with the smallest diameter available. If this cost exceeds
the cost of the running optimum, the partial candidate is re-
jected. While the minimum pressure head criterion tends to
prune candidates with diameters that are too small, the cost-
based criterion tends to prune candidates of diameters that
are too large.

4.4 Modified backtracking algorithm (BT-NoUp)

A modification to the BT algorithm was made to further im-
prove its computational speed, although at the risk of pruning
the global optimum from the search. This modified algorithm

(BT-NoUp) rejects all candidates that feature a smaller di-
ameter that is upstream of a larger diameter when an equal
or smaller flow rate is present in the downstream link. Typi-
cally, a network designer would not consider such designs,
and in cases where a single source feeds into a network
with constant-length links, it is advantageous (or equiva-
lent) to place larger diameters upstream of smaller diameters.
However, due to the discrete nature of diameter choices and
link lengths, an optimization problem may, in fact, have an
optimal candidate with a larger diameter downstream from
smaller ones. For this reason, the BT-NoUp algorithm, un-
like the BT algorithm, may miss the global optimum at the
expense of its greater computational efficiency.

4.5 Genetic algorithm (GA)

Genetic algorithms are stochastic optimization techniques
that mimic the process of natural selection, and numer-
ous variations of GAs have demonstrated acceptable perfor-
mance on WDN design (Nicklow et al., 2010). Given their
popularity, the GA included in this study is meant to provide
a point of comparison to the BT and CB algorithms when
applied to GDWNs.

When implemented in water network design, each candi-
date solution represents a selection of pipe diameters. The
algorithm is initialized with a population of candidates of
size Nc that repeatedly undergoes the processes of mutation,
crossover, and selection

ci =
[
D1,i D2,i . . . DNL,i

]
, (28)

where each candidate in the population ci contains NL di-
ameters. In the present work, candidates are represented as a
string of natural numbers, which is used over a binary repre-
sentation to improve the ease of encoding (Vairavamoorthy
and Ali, 2000). The mutation operator replaces pipe diam-
eters with a diameter from a uniform random distribution,
where each link diameter has a probability of pmut of mu-
tating on each generation. The crossover operator randomly
pairs individuals in the population with probability pxover
and performs a single-point crossover of the two individu-
als, where the point of crossover is randomly chosen. The
fitness, fi , of each candidate is assessed with penalties as-
sociated with the solution’s pipe cost, Cpipe,i , and hydraulic
cost, Chyd,i , which is assigned when violations of the pres-
sure head requirements occur:

fi =
1

Cpipe,i +Chyd,i
. (29)

The hydraulic cost is found for each individual by identify-
ing nodes in which the pressure head is less than hmin and
multiplying the total amount of head violation by a hydraulic
penalty coefficient, ahyd:

Chyd,iC = ahyd

NL∑
1

(
hmin−hiN

)
|hiN < hmin. (30)
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To allow for a hydraulic penalty coefficient to produce
similar results in both small-scale (inexpensive) network and
a large-scale (more expensive) cases, the hydraulic penalty
coefficient is made directly proportional to the average so-
lution cost. With each generation, ahyd is updated by multi-
plying the normalized penalty coefficient, ahyd,norm, by the
average pipe cost of the population,

ahyd = ahyd,norm

Nc∑
1
Cpipe,iC

Nc
. (31)

The algorithm then selects candidates to be carried into the
next generation with a tournament selection method, where
Nc groups of s individuals are randomly assigned and the
fittest candidate among each group is selected, thus replacing
the previous population with an equally sized population of
Nc individuals.

In this study, the genetic algorithm parameters used were
Nc = 200, pmut = 0.05, pxover = 1, Ngen = 500, ahyd,norm =

0.05, and s = 10. These parameters were chosen by system-
atically varying parameter values until the optimum cost of a
network, case 2, could no longer be significantly improved.
The first four of these values are in line with typically used
values from Simpson et al. (1994) of Nc (30–200), pmut
(0.01–0.05), pxover (0.7–1.0), and Ngen (100–1000).

5 Cases studied

Six cases were studied based on actual GDWN in Panama,
Nicaragua, and the Philippines. Global characteristics of
each network are presented in Table 1 and the details of
each network are presented in Table 4a–f. Each network is
a branching type without loops. The total lengths of the net-
works range from less than 1 to over 15 km. Two serial net-
works are tested to demonstrate the effect of a local high
point on the algorithm solutions. Elevation plots for each
case are shown in Fig. 5.

The choice of hmin is not standardized, and should appro-
priately balance the risk of negative pressure in pipes and
the increase in network cost due to the requirement of using
larger diameters. The choice of hmin in GDWN design is typi-
cally in the range of 5–20 m (Arnalich, 2010; Bouman, 2014;
Swamee and Sharma, 2008). In the present study hmin= 7 m,
although this requirement was reduced at selected nodes at
the beginning of a network where changes in elevation are
still small (case 2, where the pressure head at node 2 is re-
laxed to 2 m). At the source node, the pressure head is fixed at
atmospheric pressure. All cases assumed minor-lossless flow,
although all algorithms (e.g., Eq. 18 for CB-Theor) are capa-
ble of handling minor loss coefficients through the equivalent
length method as described above. All algorithms were run
in a late-version of MATLAB (or Mathcad for CB) on an
Intel i5 processor at 2.50 GHz.

6 Mapping the theoretical D to discrete pipe sizes

The mapping between continuous diameters and the discrete
nominal pipe sizes was accomplished in our solution in one
of the following ways:

1. For small and moderate size networks, the designer may
manually adjust the pipe sizes (downward, normally one
pipe size) starting from the first link downstream from
the source and continuing along the rest of the distribu-
tion main to the end in a step-by-step manner. A nearby
plot of the pressure heads compared with the theoretical
Dij from the CB approach (e.g., on the same Mathcad
page for our solution) will highlight the acceptability or
unacceptability of any change. This exercise also gives
the designer valuable understanding of the sensitivity of
the design to small changes in pipe sizes.

2. Based on the theoretical Dij from the CB approach,
a split-pipe can be created for each link. That is, the
lengths for the two discrete pipes sizes that bound the
theoretical Dij from above and below are calculated
such that the pressure drop between two consecutive
nodes in the distribution main matches between the
composite pipeline and the CB approach. This also pro-
vides discrete pipe sizes that nearly match the CB solu-
tion in terms of cost.

7 Results

The current study evaluated three types of algorithms that op-
timize the design of gravity-driven water networks (GDWN).
The algorithms include the calculus-based (CB) algorithm
(Eq. 18), a backtracking algorithm (BT) and its modified ver-
sion (BT-NoUp), and a genetic algorithm (GA). The algo-
rithms were applied to six test cases that are based on real
GDWNs. Our results show that the CB, GA, and BT-NoUp
algorithms could find solutions to the GDWNs within 25 %
of the BT global optimum. All cases assume minor-lossless
flow and a two-part pipe-cost model. Solution costs from
each algorithm are shown in Table 2 and runtime statistics
are shown in Table 3. BT could run to completion in < 1 min
in all but the largest case (case 6 with 59 links), which did
not complete after 7 days. As such, cost comparisons to BT
are not made for case 6.

The CB algorithm based on Eq. (18), unlike the other al-
gorithms in this work, finds a solution with theoretical diam-
eters that are drawn from a continuous domain (CB-Theor).
For all test cases, the costs of the CB-Theor solutions was
less when compared with the BT discrete-diameter global op-
timum (5.5 to 2.6 % lower cost than BT). In fact, because of
the discrete pipe sizes needed for an actual network, the con-
tinuous model will always produce the smallest theoretical
network cost. The CB algorithm then maps this solution to
a commercially-available discrete set (CB-Disc). The map-
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Table 1. Characteristics of test cases.

Test case Type Number of Number of Qtot Ltot
diameter choices links (L s−1) (km)

(1) Kiangan, Philippines Branching 8 9 4.37 0.82
(2) Los Modulos, Nicaragua Serial 4 13 0.39 1.24
(3) Cañazas, Panama Branching 10 23 6.29 15.2
(4) San Miguel, Nicaragua Serial 9 10 0.40 1.18
(5) El Guabo, Nicaragua Branching 12 17 17.7 4.71
(6) Los Mangos, Nicaragua Branching 7 59 1.92 2.64

Figure 5. Network elevation (z) and hydraulic grade lines (HGLs) of algorithm solution for main distribution links.

ping process used in this study simply mapped each theoreti-
cal diameter to the nearest available diameter of a larger size,
thus producing a solution which still satisfies static head re-
quirements but with a higher associated material cost. This
tended to oversize the diameters, although the CB-Disc solu-
tions were always within two diameters of the known global
optimum solutions, as shown in Fig. 6. From all the com-
bined test cases with known global optima, all but one (71
out of 72) of the diameter selections were within one di-
ameter of the global optimum. More sophisticated mapping
schemes, like independently adjusting D for each link in the
distribution main in a step-by-step manner starting with the
source while ensuring all pressure head constraints are satis-
fied, would be more likely to produce results identical to the
global optimum (see Sect. 6). This was performed in the cur-
rent study but the results are not presented because of space

constraints. The CB-Disc solution costs were, in all cases,
larger than the global optimum, with costs ranging from 3.9
to 22.6 % above the global optimum. Thus, for all cases, the
calculus-based algorithm bounded the cost of the global op-
tima with a lower-cost CB-Theor solution and a higher-cost
CB-Disc solution. This trend is a result of the additional con-
straints imposed by the finite set of diameter choices. If the
algorithm is allowed a greater number of discrete diameter
choices, i.e., through adding a less-common nominal diame-
ter size to the available set, the cost of the CB-Disc solution
would approach the CB-Theor solution. For all but case 6,
the CB algorithm converged on a solution in 3 min or less.

BT-NoUp, a modified version of BT which does not con-
sider smaller diameters upstream of large diameters, com-
pleted itself within 4 s for all cases, and found solutions
which matched or came very close to the BT global opti-
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Table 2. Solution costs for each algorithm.

Case Solution cost (USD) Percentage cost increase over Percentage cost increase
BT (global optimum) over CB-Theor

BT BT-NoUp CB-Theor CB-Disc GA BT-NoUp CB-Theor CB-Disc GA BT BT-NoUp CB-Disc GA

(1) Kiangan, Philippines 2331 2331 2257 2594 2337 0 −3.2 11.3 0.3 3.3 3.3 14.9 3.5
(2) Los Modulos, Nicaragua 1441 1472 1404 1767 1445 2.1 −2.6 22.6 0.3 2.7 4.8 25.9 2.9
(3) Cañazas, Panama 72 190 72 443 68 245 84 441 73 964 0.4 −5.5 17.0 2.5 5.8 6.2 23.7 8.4
(4) San Miguel, Nicaragua 5418 5418 5172 5627 5422 0 −4.5 3.9 0.1 4.8 4.8 8.8 4.8
(5) El Guabo, Nicaragua 61 445 61 445 59 506 73 886 63 113 0 −3.2 20.2 2.7 3.3 3.3 24.2 6.1
(6) Los Mangos, Nicaragua ∗ 4082 3670 4405 4339 ∗ ∗ ∗ ∗ ∗ 11.2 20.0 18.2

∗ Note: BT did not complete after 7 days of runtime.

Table 3. Runtime and size of solution space for each algorithm.

Case Runtime Number Number of Possible candidate Partial candidates
of links diameter choices solutions considered

BTa BT-NoUpa CB GAa BT BT-NoUp

(1) Kiangan, Philippines 0.2 s 0.05 s < 3 min 1 s 9 8 1.3× 108 269 126
(2) Los Modulos, Nicaragua 7 s 0.04 s < 3 min 2 s 13 4 6.7× 107 48 886 210
(3) Cañazas, Panama 40 s 0.1 s < 3 min 2 s 23 10 1.0× 1023 433 210 2367
(4) San Miguel, Nicaragua 0.5 s 0.04 s < 3 min 2 s 10 9 3.5× 109 3671 244
(5) El Guabo, Nicaragua 0.5 s 0.05 s < 3 min 2 s 17 12 2.2× 1018 3810 423
(6) Los Mangos, Nicaragua > 7 dayb 2 s 94 min 5 s 59 7 7.3× 1049 b 44 374

a BT, BT-NoUp, and GA algorithm run times do not include approximately 2 s of pre-processing time. b BT did not complete case 6 after 7 days of runtime.

Figure 6. Diameter sizes from calculus-based (CB-Disc) solutions
compared with global optimum solutions (from backtracking, BT).
A global optimum for case 6, Los Mangos, is not included since BT
did not complete after 7 days of runtime.

mum. BT-NoUp missed the global optimum in cases 2 and
3, although by a small percentage increase in cost (2.1 and
0.4 % respectively). BT-NoUp, however, finished its search
in a shorter amount of time in comparison to BT, a bene-
fit that becomes relevant on problems with larger solution
spaces, such as cases 3 (1.0× 1023 candidate solutions) and
case 6 (7.3× 1049 candidate solutions).

GA was run on each case a total of 100 times, each run it-
self evolved 200 candidates for 500 generations. The lowest-
cost candidate amongst the final population that did not vi-
olate the pressure head condition was chosen as the GA so-
lution. Because GA is a stochastic search algorithm produc-
ing different results from run-to-run, the costs of the optima
from all 100 runs were averaged, with this averaged value
presented in Table 2. Overall, GA costs came close to the
global optima (within 3 %) for cases 1–5 where the global
optimum was known from BT. GA solution costs increased
with larger network sizes, with its solution cost 18 % higher
than CB-Theor for case 6, the largest case run. Each GA run
finished consistently within 1–5 s, not including about 2 sec-
onds of pre-processor time. We note that variations of GAs
have been reported in the literature and several of these may
improve upon the GA results obtained in this study. Poten-
tial improvements to the GA a self-adapting penalty func-
tion (Wu and Walski, 2005), the use of elitism to preserve
the best solutions (Kadu et al., 2008), and a reduction in the
search space (Kadu et al., 2008). One reported improvement,
the scaling of the fitness function to magnify the rewards to-
wards slightly fitter candidates at later generations (Dandy et
al., 1996), was attempted for case 2 but did not result in a
noticeable effect on performance.

To visually compare the algorithm solutions, the hydraulic
grade lines from BT, BT-NoUp, CB-Theor, and CB-Disc are
presented in Fig. 5 along with the network elevation for each
test case. For clarity, the hydraulic grade lines of branch links
are omitted from the figure. In addition, the GA solutions
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Table 4. Case network properties, diameter (D) results (inch nominal sizes, with CB-Theor in inches), and nodal h (in meters) for (a) Case
1, Kiangan, (b) Case 2, Los Modulos, (c) Case 3, Cañazas, (d) Case 4, San Miguel, (e) Case 5, El Guabo, and (f) Los Mangos.

(a)

N
et

w
or

k Link 1–2 2–3 3–4 4–5 5–6 2–7 3–8 4–9 5–10
Length (m) 76 113 19 54 75 80 99 170 135
Q (L s−1) 4.37 3.68 2.94 1.46 0.69 0.69 0.74 1.48 0.77
1z (m) 14.0 1.0 0.0 0.0 −1.0 0.0 −2.0 3.0 2.0

D
so

lu
tio

ns BT 3 2–1/2 2 1–1/2 1–1/2 1 1–1/4 1–1/2 1–1/4
BT-NoUp 3 2–1/2 2 1–1/2 1–1/2 1 1–1/4 1–1/2 1–1/4
CB-Theor 2.751 2.562 2.141 1.830 1.356 1.062 1.376 1.584 1.128
CB-Disc 3 3 2–1/2 2 1–1/4 1–1/4 1–1/4 1–1/2 1–1/4

h
(m

)

Node 1 2 3 4 5 6 7 8 9 10
BT 0 13.09 11.43 10.72 8.81 7.10 7.27 7.21 7.57 7.58
BT-NoUp 0 13.09 11.43 10.72 8.81 7.10 7.27 7.21 7.57 7.58
CB-Theor 0 12.48 11.24 10.65 9.61 7.00 6.99 7.00 7.00 3.19
CB-Disc 0 13.09 13.15 12.85 12.27 9.78 11.51 8.94 9.70 11.04

(b)

N
et

w
or

k Link 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 10–11 11–12 12–13 13–14
Length (m) 60 41 108 46 134 153 79 157 90 32 102 120 117
Q (L s−1) 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39
1z (m) 11.2 −0.5 32.8 −3.7 36.6 −2.3 15.7 −6.8 7.3 −7.4 4.5 −1.2 8.4

D
so

lu
tio

ns BT 1 1 3/4 3/4 3/4 3/4 1 3/4 1 1 3/4 3/4 3/4
BT-NoUp 1 1 1 1 1 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4
CB-Theor 0.987 0.984 0.849 0.849 0.849 0.849 0.849 0.849 0.849 0.849 0.849 0.849 0.849
CB-Disc 1 1 1 1 1 1 1 1 1 1 1 1 1

h
(m

)

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14
BT 0 9.55 7.94 31.59 24.00 49.25 33.99 47.55 27.45 32.32 24.05 19.91 8.55 7.04
BT-NoUp 0 9.55 7.94 37.82 32.88 65.85 50.59 59.60 39.50 39.18 29.07 24.93 13.56 12.05
CB-Theor 0 9.00 7.00 31.86 24.78 51.53 37.98 47.87 29.53 30.21 20.46 17.46 7.44 7.23
CB-Disc 0 9.55 7.94 37.82 32.88 65.85 59.41 72.98 61.93 66.80 58.53 60.27 55.83 61.06

(c)

N
et

w
or

k Link 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 10–11 11–12 12–13 2–14 3–15 4–16 5–17 6–18 7–19 8–20 9–21 10–22 11–23 12–24
Length (m) 646 275 957 509 1102 291 1764 1256 2320 1580 2170 1217 160 100 1250 110 570 180 1400 50 400 260 100
Q (L s−1) 6.29 5.49 5.39 5.34 5.14 2.84 2.74 2.49 2.39 0.69 0.39 0.20 0.80 0.10 0.05 0.20 2.30 0.10 0.25 0.10 1.70 0.30 0.19
1z (m) 25.0 38.9 11.9 42.1 −22.9 32.3 −29.9 40.8 −3.0 −14.7 34.1 −7.6 −5.0 20.0 −15.0 2.0 −12.0 14.0 −6.0 5.0 −1.0 −13.0 9.0

D
so

lu
tio

ns BT 4 3 3 4 3 3 3 2–1/2 2–1/2 2 1–1/4 1 1–1/4 1/2 1/2 1/2 2 1/2 1 1/2 1–1/2 1–1/4 1/2
BT-NoUp 4 4 4 4 3 3 2–1/2 2–1/2 2–1/2 2 1–1/4 1 1–1/4 1/2 1/2 1/2 1–1/2 1/2 1 1/2 1–1/2 1–1/2 1/2
CB-Theor 3.530 3.531 3.333 3.307 3.270 2.727 2.698 2.579 2.548 1.862 1.227 1.011 1.283 0.325 0.508 0.404 1.678 0.343 0.963 0.281 1.405 1.401 0.488
CB-Disc 4 4 4 4 4 3 3 3 3 2 1–1/4 1 1–1/4 1/2 1/2 1/2 2 1/2 1 1/2 1–1/2 1–1/2 1/2

h
(m

)

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
BT 0 21.1 55.4 51.5 91.3 51.7 82.5 43.9 69.8 41.4 22.1 40.0 21.7 12.1 72.2 24.3 82.2 26.1 90.8 20.1 73.3 21.9 7.81 39.7
BT-NoUp 0 21.1 58.8 66.4 106 66.6 97.4 42.8 68.8 40.4 21.0 39.0 20.7 12.1 75.6 39.2 97.1 9.5 106 19.0 72.2 20.9 7.43 38.7
CB-Theor 0 17.8 54.3 55.6 91.9 56.7 86.3 40.3 69.0 44.1 21.9 27.9 7.64 6.99 8.02 7.70 7.98 7.72 7.79 7.70 8.18 7.68 7.69 7.71
CB-Disc 0 21.1 58.8 66.4 106 78.8 110 70.9 106 94.4 75.1 93.0 74.7 12.1 75.6 39.2 97.1 53.1 118 47.1 110 74.9 61.4 92.7
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Table 4. Continued.

(d)
N

et
w

or
k Link 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 10–11

Length (m) 189 168 139 81 32 92 225 115 52.3 85
Q (L s−1) 3.60 3.60 3.60 3.60 3.60 3.60 3.60 3.60 3.60 3.60
1z (m) 27.4 10.7 −6.4 6.1 −5.2 −18.6 33.2 58.2 −11.3 32.9

D
so

lu
tio

ns BT 3 3 3 3 3 2–1/2 2 1–1/4 1–1/4 1–1/4
BT-NoUp 3 3 3 3 3 2–1/2 2 1–1/4 1–1/4 1–1/4
CB-Theor 2.939 2.929 2.929 2.929 2.929 2.929 1.671 1.462 1.462 1.368
CB-Disc 3 3 3 3 3 3 2 1–1/2 1–1/2 1–1/4

h
(m

)

Node 1 2 3 4 5 6 7 8 9 10 11
BT 0 25.88 35.20 27.68 33.13 27.70 7.02 28.27 43.86 13.19 14.60
BT-NoUp 0 25.88 35.20 27.68 33.13 27.70 7.02 28.27 43.86 13.19 14.60
CB-Theor 0 25.53 34.51 26.72 32.01 26.51 7.00 6.99 32.93 6.96 7.02
CB-Disc 0 25.88 35.20 27.68 33.13 27.70 8.37 29.62 67.54 47.02 48.43

(e)

N
et

w
or

k Link 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 2–11 3–12 4–13 5–14 6–15 7–16 8–17 9–18
Length (m) 383 486 1030 600 150 400 187 450 227 230 240 110 270 130 130 260 110
Q (L s−1) 17.72 14.68 12.76 11.96 10.04 7.72 6.60 3.12 1.20 3.04 1.92 0.80 1.92 2.32 1.12 3.48 1.92
1z (m) 10.9 10.0 −5.6 3.2 −2.6 5.7 −4.1 4.2 −3.1 2.0 2.5 −1.2 2.0 −1.1 0.0 1.0 2.0

D
so

lu
tio

ns BT 8 6 6 6 6 5 5 4 2 2–1/2 1–1/2 1–1/2 2 3 1–1/4 3 1–1/2
BT-NoUp 8 6 6 6 6 5 5 4 2 2–1/2 1–1/2 1–1/2 2 3 1–1/4 3 1–1/2
CB-Theor 6.875 6.408 6.144 6.008 5.691 4.800 4.576 3.494 2.649 2.364 1.608 1.529 1.932 3.250 1.395 3.076 1.647
CB-Disc 8 8 8 6 6 5 5 4 3 2–1/2 1–1/2 1–1/2 2 4 1–1/2 4 2

h
(m

)

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
BT 0 10.34 18.50 9.91 11.53 8.61 13.16 8.65 12.11 7.25 8.48 7.23 7.35 8.84 7.03 7.16 7.68 7.80
BT-NoUp 0 10.34 18.50 9.91 11.53 8.61 13.16 8.65 12.11 7.25 8.48 7.23 7.35 8.84 7.03 7.16 7.68 7.80
CB-Theor 0 9.76 18.35 9.93 11.49 8.46 12.70 7.94 10.67 7.00 7.00 7.00 7.00 7.01 7.00 7.00 7.00 7.01
CB-Disc 0 10.34 19.85 13.47 15.09 12.17 16.72 12.21 15.67 12.27 8.48 8.58 10.91 12.40 10.94 13.84 12.67 15.76
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Table 5. Optimization results from Bhave (1978) algorithm. LHS sum and RHS sum are the left and right sides of his Eq. (19), which should
be equal.

Node Main Main C Main head Branch Branch C Branch head LHS sum RHS sum
b (USD) loss (m) b (USD) loss (m) (USD m−1) (USD m−1)

2 1.19 77.73 0.428 1.16 231.86 11.20 215.43 241.13
3 1.16 62.87 0.335 1.16 15.53 0.36 217.19 265.77
4 1.16 62.53 0.335 1.16 5.51 5.87 216.11 216.33
5 1.16 278.99 1.499 1.16 6.69 8.73 215.25 215.66
6 1.16 138.01 0.743 1.16 5.13 12.37 214.77 214.60
7 1.16 127.12 0.687 1.16 10.07 17.62 214.12 213.93
8 1.16 111.23 0.603 1.16 9.17 12.31 213.27 213.21
9 1.16 114.87 0.626 1.16 8.87 10.90 212.35 212.13
10 1.16 133.07 0.729 1.16 14.81 14.62 211.19 98.10
11 1.16 67.55 0.806 1.16 69.63 0.70 96.93 212.18
12 1.16 414.08 4.973 1.16 8.42 15.63 96.31 96.70
13 1.16 38.53 0.464 1.16 3.05 14.95 96.07 95.96
14 1.16 64.36 0.778 1.16 4.32 14.63 95.73 95.50
15 1.16 72.08 0.876 1.16 6.67 13.50 95.15 95.33
16 1.16 31.88 0.389 1.16 5.84 17.06 94.76 94.77
17 1.16 204.81 2.510 1.16 5.39 16.31 94.38 93.18
18 1.16 79.31 0.989 1.16 12.07 8.77 92.79 93.44
19 1.16 52.49 0.661 1.16 6.71 8.00 91.85 91.98
20 1.16 88.23 1.121 1.16 6.20 8.28 91.01 91.16
21 1.16 79.12 1.014 1.16 7.47 11.98 90.30 89.01
22 1.16 31.58 0.414 1.16 12.47 7.09 88.29 89.36
23 1.16 51.36 0.680 1.16 8.48 9.99 87.33 85.74
24 1.16 50.84 0.694 1.16 11.52 5.10 84.76 85.51
25 1.16 35.40 0.494 1.16 10.59 6.41 82.90 80.51
26 1.16 29.28 0.431 1.16 20.15 5.27 78.60 82.14
27 1.16 55.92 0.832 1.16 5.52 6.74 77.72 75.66
28 1.16 270.13 4.182 1.16 11.61 4.29 74.71 75.75
29 1.16 222.58 3.545 1.16 8.79 4.42 72.62 73.87
30 1.16 34.71 0.561 1.16 9.56 9.10 71.57 49.43
31 – – – 1.16 47.15 1.13 – –

are omitted since 100 solutions were obtained for each test
case. Collectively, the hydraulic grade lines reveal a close
alignment of the BT solution (the global optimum) with the
CB-Theor solution which utilizes a continuous diameter set.
Furthermore, the mapping scheme used to generate a CB-
Disc solution is shown to increase pipe sizes in some cases
far beyond the limit imposed by hmin, which was set to 7 m
in the present work.

We compared the CB results for the Los Mangos network
with those from the Bhave (1978) optimization algorithm
(see Table 5). Like Eq. (15) in the present work, Bhave’s op-
timality equation (his Eq. 19) equates the sum of a weighted
term for all links entering and leaving each internal node in
the distribution main. In the present work the term is propor-
tional to the hydraulic gradient and the weighting factor is
proportional to flow rate. In Bhave’s case the term is the ratio
of pipe cost to head loss, where the weighting factor is pipe-
cost exponent b. There are 60 nodes for this network, includ-
ing 30 nodes in the distribution main. The rest are delivery

nodes (note there are 2 branches from node 30 of the distri-
bution main). The terms required for the calculations include
b, pipe cost, and head loss in the main and branches. The
designation LHS refers to nodes in the distribution main en-
tering, and RHS to those leaving, the node at the far-left side
of Table 5. The exponent b comes from curve fitting pipe-
cost data to the two-part pipe-cost model. Linear interpola-
tion was used between diameters Dco and Dco+1 to obtain b
in this range. Except for a few nodes, agreement between the
two CB algorithms is very good. Although Bhave’s Eq. (19)
and Eq. (18) in the present work, appear quite different due
to the different ways each was developed, both produce opti-
mality for the networks considered in this paper. The key dis-
tinction between the two developments is the assumption of
constancy in terms that comprise the coefficient A in Bhave
(his Eq. 13), mainly the exponent b (m in his paper). In gen-
eral, b depends on pipe diameter, thus making b = b(D) for
multi-part cost models. When taking derivatives to obtain the
final algorithms in both works, this dependence must be in-
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cluded, which produces additional terms in the optimization
equation (see our Eq. 18 above). However, if the system of
equations is solved by an iterative method, as Bhave pro-
posed, the dependency may be neglected (though issues with
convergence of the numerical solution may arise because of
this). It is very important to note that if a non-iterative method
is used to solve the system of equations as done in the present
work (using a commercial program like Mathcad), all terms
in the governing equations must be treated as continuous, not
discrete, and the b = b(D) dependence must be explicitly in-
cluded. It should also be noted that the optimization algo-
rithm of Eq. (18) in this paper includes minor loss, which is
not included in the Bhave (1978) work.

8 Conclusions

Algorithms to optimize the cost of branching gravity-driven
water networks are evaluated on six test cases from real
networks in the Philippines, Nicaragua, and Panama. A
calculus-based algorithm produced a solution composed of
theoretical diameters from a continuous set (CB-Theor),
which are then mapped onto discrete commercially available
diameters (CB-Disc). Backtracking (BT), a recursive algo-
rithm, systematically searches discrete candidate solutions
and, when run to completion, is guaranteed to find the global
optimum by following rules that prune only higher-cost or
hydraulically infeasible candidates. The BT algorithm was
modified (BT-NoUp) to improve computational speed by re-
jecting all candidates that included a small diameter directly
upstream of a larger diameter but allowed for the possibility
of missing the global optimum. The third type of algorithm
evaluated was a genetic algorithm (GA) that used single-
point crossover and tournament selection.

BT could find the global optimum in most test cases with
relatively little computational effort, although its poor scaling
to larger networks is evidenced by its inability to find a solu-
tion to case 6, a network with 60 nodes and 59 links. The BT-
NoUp completed its search in less time than BT and could
find a solution to case 6. Based on case 1–5 results, the extra
pruning condition adopted in BT-NoUp sacrificed only small
cost increases. Both BT and BT-NoUp, however, could be-
come prohibitively time-consuming when dealing with net-
works with significantly more links, diameter choices, or an
unfavorable layout. While the test cases represent the range
of GDWN sizes encountered in the authors’ experience, fu-
ture work would be needed to verify the suitability of the BT
and BT-NoUp algorithms on larger GDWNs. The calculus-
based algorithm produced consistently good results for the
networks tested, although a more robust mapping scheme
from theoretical diameters to discrete diameters would fur-
ther improve on these results as discussed above. In poten-
tial future work, the CB-Theor solutions could be used to
prune the BT search space, like Kadu et al. (2008), by only
including the two diameters above and below the CB-Theor

diameters, producing four diameter choices per link. The
calculus-based methodology provides an additional benefit
to the designer by explicitly revealing the sensitivities to cost
for a design. The calculus-based algorithm requires greater
computational effort than backtracking for smaller networks,
however, this effort scales more linearly with the number of
network links, while backtracking scales exponentially. Fur-
thermore, backtracking’s computational time is sensitive to
the number of available diameters. Still, when applied to the
present study’s GDWN test cases with a modest number of
links (23), backtracking quickly found a global optimum.
In addition, because it is guaranteed to find the global op-
timum, it can be useful for benchmarking the performance of
other algorithms which scale better with more network links.
While the genetic algorithm produced solutions with good
proximity to the global optimum, its solution costs tended to
be further from the global optimum in cases with more links.

For all test cases, the calculus-based algorithm’s theoret-
ical diameter solutions (CB-Theor) produced a lower cost
than the discrete-domain global optimum. This result is made
possible because it is not constrained to a discrete set of di-
ameters. As such, the CB-Theor results represent a lower-
bound on the optimum solution within the problem formu-
lation, which could be approached with a finer selection of
pipe diameters. We also demonstrated good agreement be-
tween the CB-based optimization algorithm developed here
and that of Bhave (1978). Though Bhave’s algorithm and
Eq. (18) in the present work appear quite different due to the
different ways each was developed, both produce optimality
for the networks considered in this paper. The key distinc-
tion between the two developments is that Bhave assumed
exponent b constant in the pipe-cost model, which was justi-
fied based on his iterative method of solution. In the present
work, which uses a commercial program to solve the non-
linear governing equations for D and h, b(D) dependence
is explicitly included for multi-part cost models. Contrasted
with Bhave, minor losses are included in the CB optimization
algorithm in the present work.

Data availability. All survey data from the network cases tested
are available in Table 4.
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