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Abstract. The effect of limitations in the structural detail available in a network model on contamination warn-
ing system (CWS) design was examined in case studies using the original and skeletonized network models for
two water distribution systems (WDSs). The skeletonized models were used as proxies for incomplete network
models. CWS designs were developed by optimizing sensor placements for worst-case and mean-case contam-
ination events. Designs developed using the skeletonized network models were transplanted into the original
network model for evaluation. CWS performance was defined as the number of people who ingest more than
some quantity of a contaminant in tap water before the CWS detects the presence of contamination. Lack of
structural detail in a network model can result in CWS designs that (1) provide considerably less protection
against worst-case contamination events than that obtained when a more complete network model is available
and (2) yield substantial underestimates of the consequences associated with a contamination event. Neverthe-
less, CWSs developed using skeletonized network models can provide useful reductions in consequences for
contaminants whose effects are not localized near the injection location. Mean-case designs can yield worst-case
performances similar to those for worst-case designs when there is uncertainty in the network model. Improve-
ments in network models for WDSs have the potential to yield significant improvements in CWS designs as well
as more realistic evaluations of those designs. Although such improvements would be expected to yield improved
CWS performance, the expected improvements in CWS performance have not been quantified previously. The
results presented here should be useful to those responsible for the design or implementation of CWSs, particu-
larly managers and engineers in water utilities, and encourage the development of improved network models.
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1 Introduction

Water distribution systems (WDSs) can be contaminated in-
tentionally by the injection of a contaminant into the system
or accidentally, for example, by releases of contaminants into
reservoirs or by contaminated water entering the distribu-
tion system when adequate pressure is not maintained. Sen-
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sors designed to detect potential contaminants can provide a
warning that a system has been contaminated and reduce po-
tential consequences associated with a contamination event.
The design of contamination warning systems (CWSs) em-
ploying multiple sensors has been an active research area;
Hart and Murray (2010) have reviewed strategies for place-
ment of sensors in CWSs. Given that a CWS may be able
to help reduce consequences associated with contamination
events, understanding the factors that can affect the quality of
a CWS design is important for those responsible for manag-
ing distribution systems. This paper focuses on one important
factor, the accuracy with which the network model of a dis-
tribution system represents the actual structural details of the
network, namely its pipes and junctions.

Lack of structural detail in the network models developed
for WDSs is known to reduce the accuracy of estimated ad-
verse health effects associated with potential contamination
events in these systems (e.g., Grayman et al., 1991; Grayman
and Rhee, 2000; Bahadur et al., 2008; Janke et al., 2007,
2009; Davis and Janke, 2014). Lack of network model de-
tail is also known to affect sensor placement in the design of
CWSs (Klise et al., 2013). All network models involve some
degree of simplification relative to the actual WDS. Although
improvements in network models would be expected to result
in improved CWS performance, the relationship between the
degree to which the network model represents the actual dis-
tribution system and its operations and CWS performance
has not been quantified. In this paper we examine quantita-
tively how lack of structural detail in the network model af-
fects CWS performance. We do not consider potential effects
of inaccuracies in the representation of distribution system
operations.

Studies have examined the influence of uncertainty in var-
ious factors on the design of CWSs. Most studied has been
the influence of uncertainty in the nature of potential con-
tamination events; Davis et al. (2013) provide a recent re-
view of work in this area. Studies also have considered the
influence of uncertainty in water demand (e.g., Berry et al.,
2006; Comboul and Ghanem, 2012; Cozzolino et al., 2006,
2011; Mukherjee et al., 2017; Ostfeld and Salomons, 2005a,
b; Shastri and Diwekar, 2006) and population density (Rico-
Ramirez et al., 2007; Davis et al., 2013). Davis et al. (2013)
also considered the influence of uncertainty in the rate of con-
taminant decay in a network following injection and uncer-
tainty in the nature of the exposure model used to assess the
consequences of a contamination event. We are not aware of
any studies that have examined the influence on CWS design
of uncertainties in the nature of the network itself, specifi-
cally the accuracy with which the network model used as the
basis for designing a CWS represents the actual structure, the
pipes and junctions, of the distribution system being consid-
ered.

In addition to the influence of uncertainty in the various
factors just discussed on the performance of a CWS, the de-
sign objective used for the system can also affect its perfor-

mance when faced with uncertainties. When the nature of
potential contamination events is uncertain and the objec-
tive is to minimize worst-case adverse consequences associ-
ated with the events, CWSs designed to minimize mean-case
consequences are more robust than those designed to min-
imize worst-case consequences (Davis et al., 2013). These
designs are called mean-case and worst-case designs, respec-
tively. Mean-case designs are more effective at reducing con-
sequences over a range of conditions. The relative lack of
robustness of worst-case designs is a consequence of the nar-
row focus of these designs, which handicaps their perfor-
mance when conditions differ from those assumed as the ba-
sis for the design.

The primary goal of this paper is to examine how and to
quantify to what extent limitations in the detail available on
a system’s pipes and junctions affect the performance of a
CWS design. An additional goal of this paper is to obtain
some insight into the robustness of worst- and mean-case de-
signs for a CWS when there are such limitations in the net-
work model used to represent a WDS.

Contamination in a distribution system has the potential to
cause a variety of adverse effects. This paper considers ad-
verse health effects associated with the ingestion of contam-
inated tap water; quantities of ingested contaminant, inges-
tion doses, are determined for those individuals who are po-
tentially exposed to contaminated water. The term dose level
is used to indicate the quantity of ingested contaminant for
which adverse consequences are quantified. For a particular
contaminant, dose level can be related to a health-effect level.
For example, a dose level could correspond to the median
lethal dose or the no-observed-adverse-effect level. Lower
dose levels can be related to a particular health-effect level
for more toxic chemical contaminants and higher dose levels
can be related to the same health-effect level for less toxic
contaminants. In this paper when high or low dose levels
are discussed, a statement is sometimes added that these can
be related to contaminants with relatively low or high toxic-
ity, respectively, to re-emphasize this point. The measure of
adverse consequences associated with a contamination event
that is used in this paper, called impact, is the number of peo-
ple who receive a dose of a contaminant above some dose
level due to the ingestion of contaminated tap water. In this
paper the performance of a CWS is defined by the impact
that occurs before the CWS detects the presence of contami-
nation.

The analysis presented in this paper is based on case stud-
ies using two WDSs. The best available network models
for the two systems were used to represent the actual dis-
tribution systems, and skeletonized versions of these net-
work models were used as proxies for incomplete network
models that might be developed for these systems. Network
models will always be incomplete to some, generally un-
known, degree; using skeletonized network models together
with the best available network models allows the potential
significance of uncertainties in network models to be stud-
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ied. CWSs designed to minimize the adverse consequences
of ingesting contaminated tap water were developed using
the skeletonized models. These CWSs then were utilized in
(transplanted into) the complete network models, where their
performance was evaluated and compared to the performance
of designs developed using the complete network models.
This approach allows the influence of uncertainties in net-
work model detail on CWS performance to be evaluated.
Developing and transplanting both worst- and mean-case de-
signs allows the relative robustness of these designs to be
studied.

2 Methods

Implementing the approach described above for actual dis-
tribution systems requires the following: the availability of
reasonably complete (“all-pipes”) models for the WDSs, an
approach to skeletonizing these models, a method for design-
ing CWSs, and a method for evaluating the performance of
the designs. Except for the evaluation of the performance of
transplanted CWS designs developed using skeletonized net-
work models, the methods used here have been documented
in previous publications. The approach used here will be out-
lined with references provided to previous work.

Designs for CWSs were developed using the original and
skeletonized versions of the network models for two WDSs.
The characteristics of the utility-developed network models
used are summarized in Table 1, which provides the popu-
lations and areas served, numbers of nodes and pipes in the
network models, the number of tanks, reservoirs, pumps, and
valves in the models, as well as mean and median nodal pop-
ulations. Network N1 is a looped system; N3 is a branched
system. The WDS represented by Network N1 is located in
a relatively flat area, with only a few pressure zones. N3 rep-
resents a WDS located in a substantially more complicated
environment and has about 10 pressure zones.

The network models were skeletonized using commer-
cially available software to produce models with three lev-
els of skeletonization (20, 30, and 40 cm trims). All pipes
having the specified or smaller diameter were trimmed or
merged. The methodology used for skeletonization is dis-
cussed in Appendix A and is the same as we have used pre-
viously (Davis and Janke, 2014). Our results should be re-
producible if the same, consistent process described here is
applied. Skeletonization software generally uses the meth-
ods presented in Walski et al. (2003); Berry et al. (2012)
have shown that different skeletonization software generally
provides similar results. Table 2 summarizes the characteris-
tics of the skeletonized network models. Note that the ratio
of the number of pipes to the number of nodes increases as
the level of skeletonization increases, illustrating the effect
of the skeletonization process. The networks examined here
(N1 and N3) are two of the three networks used in Davis and

Table 1. Network descriptions. All numbers in this table are
rounded independently to two significant figures. NZD: nonzero de-
mand.

Network

Quantity N1 N3

Population (103) 250 350
Area (km2) 490 800
Nodes (103) 13 12
NZD nodes (103) 11 11
Pipes (103) 15 14
Tanks 2 21
Reservoirs 2 3
Pumps 4 43
Valves 5 32
Mean NZD nodal pop. 24 31
Median NZD nodal pop. 16 15

Table 2. Network skeletonization. All numbers in this table are
rounded independently to two significant figures. NZDN: nonzero
demand node.

Number of

Model Nodes NZDNs Pipes Pipes
nodes

N1 13 000 11 000 15 000 1.2
N1 20 cm 4300 3400 5600 1.3
N1 30 cm 3100 2600 4300 1.4
N1 40 cm 2800 2400 4000 1.5
N3 12 000 11 000 14 000 1.2
N3 20 cm 4500 4300 6000 1.3
N3 30 cm 3500 3300 5000 1.4
N3 40 cm 3200 3000 4700 1.5

Janke (2014). Network N1 is also Network 2 in Ostfeld et al.
(2008).

Network skeletonization affects the flow of water through
the network, which in turn affects contaminant transport. The
discussion here focuses on the implications of this change in
contaminant transport for the design of warning systems. A
discussion of the hydraulic effects of the skeletonization of
the two networks considered here is provided in Appendix B.

Developing the design for a CWS requires the definition
of a design-basis threat and the quantification of the poten-
tial adverse effects associated with that threat. A CWS is
designed to provide protection against these adverse effects.
The threat considered here is the potential injection of a fixed
quantity of contaminant at any one of the nodes in a network
or at any of the nonzero demand (NZD) nodes in the net-
work. The adverse effects examined are the impacts (as de-
fined above) associated with an injection at a network node.
Contaminant injection, transport, and ingestion were simu-
lated using TEVA-SPOT (US EPA, 2017). TEVA-SPOT uses
Version 2.00.12 of EPANET (Rossman, 2000) for calcula-
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tions involving contaminant transport. The analysis here as-
sumes 0.5 kg injections of a conservative contaminant over
a 1 h period beginning at 00:00 local time. All simulations
were 168 h in duration, which includes the 1 h injection. The
simulations used a 1 s water-quality time step and a 1 h hy-
draulic time step. One second is the shortest water-quality
time step that can be used with EPANET.

Contaminant mass imbalances can occur during water-
quality simulations with EPANET (Davis et al., 2018). Large
imbalances can be associated with elevated estimates for
impacts. However, mass imbalances generally can be min-
imized using short water-quality time steps. The 1 s water-
quality time step used here minimizes the potential for any
mass imbalances during the water-quality simulations used
in this study.

Determining impacts, which the CWSs considered in this
paper were designed to minimize, requires nodal populations
and the quantity of contaminant ingested by each of the indi-
viduals in those populations during a contamination event to
be estimated. Nodal population is not provided in the net-
work models; it was assumed to be proportional to nodal
water demand. We also assumed that all persons served by
a WDS could potentially be exposed to contaminated wa-
ter. Contaminant concentrations in a network vary both tem-
porally and spatially following injection of a contaminant.
Estimating ingestion doses, which are required to determine
impacts, therefore requires the times when each individual
in the network will be ingesting tap water to be estimated.
The quantity of water ingested for each ingestion event also
needs to be estimated. Ingestion times were obtained with
a probabilistic model developed based on time-use studies
(Davis and Janke, 2008, 2009), which assumes that there are
five daily ingestion events for each individual. A probabilistic
model was also used for daily ingestion volume. An empiri-
cal distribution for daily water volume was developed using
estimated per capita water volumes ingested by consumers
of community water in the United States (US EPA, 2000,
2004). Random values for daily water volumes for each indi-
vidual at each node in a network were then obtained from this
distribution by inverse transform sampling. These daily vol-
umes were then divided equally among an individual’s five
daily ingestion events. Individuals were assumed to ingest
the same volume of tap water each day during the simula-
tion. The methodology used in carrying out these simulations
is the same as that discussed in Davis et al. (2014) and is in-
corporated in TEVA-SPOT.

Using TEVA-SPOT, CWSs were designed to minimize
worst- and mean-case impacts associated with the design-
basis threat subject to a constraint on the number of sen-
sors. Development of CWS designs is discussed in Davis et
al. (2013). TEVA-SPOT optimizes sensor placement using
a heuristic approach (Berry et al., 2006). Designs were de-
veloped for the original and the three skeletonized network
models for each WDS for three sensor set sizes (5, 10, and
25 sensors) and for five different dose levels ranging from

10−4 to 1 mg. A total of 120 designs were developed for each
network (two objectives, four network models, three sensor
set sizes, and five dose levels).

Sensors in CWSs were assumed to perform perfectly: they
detect all contaminants and make no errors. A zero response
time was assumed; all water use stops immediately when a
contaminant is detected. This paper does not consider the
sensitivity of consequences to sensor behavior and response
time. These assumptions simplify the analysis. Imperfections
in sensor behavior and delays in response will increase con-
sequences relative to those reported here. CWS sensors are
arrayed at locations within a network according to designs
developed as described above and in the following para-
graphs. CWSs alert when any sensor detects contamination
during an event. Impact is determined by summing the num-
ber of receptors at all nodes who have received doses above
some dose level when the system alerts. The worst-case and
mean-case performances of a CWS are determined by the
largest impact and the mean impact, respectively, associated
with a threat before contamination is detected by a sensor.

The performance of the CWS designs developed for the
original and skeletonized network models for each WDS was
evaluated using the original network model for the system.
Worst-case impacts were determined using both worst-case
and mean-case designs. To evaluate the performance of a de-
sign developed using a skeletonized network model but ap-
plied to the original network model, the locations of the sen-
sors determined for the skeletonized network were used to
define a sensor network for the original model, and impacts
were determined using this transplanted CWS. TEVA-SPOT
has a built-in capability, the Regret Analysis mode, that al-
lows various designs to be easily evaluated and that facili-
tates the selection of the best sensor design among those be-
ing considered (US EPA, 2017).

The approach described yields impacts for CWSs de-
signed using the original network models as well as impacts
for CWS designs developed using the skeletonized network
models that have been transplanted into the original mod-
els. Impacts determined using the transplanted designs were
compared with those determined using the original designs to
obtain insights into the extent to which CWS performance is
adversely affected when designs are developed using incom-
plete information on a WDS. Comparing the relative worst-
case performances of the transplanted worst- and mean-case
designs provides insight into the robustness of these designs
when there is uncertainty in the network model.

The heuristic method used for sensor placement generally
produces optimal designs, but in some cases can produce de-
signs that are suboptimal (Davis et al., 2013). For the origi-
nal model for Network N1 there were two instances of obvi-
ous suboptimality for worst-case designs out of the 15 cases
(three sensor set sizes and five dose levels) examined; for
Network N3 there was one. A design is suboptimal if larger
impacts are obtained when the conditions used in the design
and its evaluation are the same than when such conditions
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differ. Results were corrected to help minimize the effect of
such obvious suboptimalities for a particular sensor set size
and dose level by using the smallest impact from the five de-
signs developed for different dose levels for that number of
sensors. The corrections resulted in reductions in impacts of
6 and 18 % for the two instances of suboptimality for Net-
work N1 and a 9 % reduction for the single instance for Net-
work N3. The correction does not identify the optimal de-
sign; it only helps improve the estimate of impacts that would
be obtained with the optimal design.

3 Results and discussion

This section considers two topics: (1) CWS performance
given uncertainty in the structural details of the network
model and (2) the robustness of mean- and worst-case CWS
designs when there is such uncertainty in the network model.
CWS performance is discussed in terms of the performance
of the overall system and in terms of the performance of the
individual sensors in a system.

3.1 CWS performance: overall system

CWSs developed using the skeletonized network models
generally perform more poorly than do those developed us-
ing the original network model. The following paragraphs
discuss the behavior of these different CWSs.

The plots in Fig. 1 compare estimated impacts for worst-
case CWS designs developed for three sensor set sizes us-
ing the original and skeletonized network models for Net-
work N1. In this figure, the designs developed using the
skeletonized network models are non-transplanted designs:
they are evaluated using the network models for which they
were designed. Note the logarithmic scales on both the ver-
tical and horizontal axes. Results are given for four different
CWS designs as a function of the dose level used for the de-
sign. The CWSs were evaluated using the same dose level
as used for their design. Impacts increase as dose level de-
creases, but are relatively constant at smaller dose levels. Im-
pacts decrease as the number of sensors used in the CWS
design increases. The four CWS designs being evaluated for
each sensor set size are the design developed using the origi-
nal network model and the three non-transplanted designs de-
veloped using the skeletonized networks. In the figure, a trim
of 0 cm corresponds to the original model and the 20, 30, and
40 cm trims correspond to the three levels of skeletonization
used. The estimated impacts obtained using the skeletonized
network models are similar to those obtained using the orig-
inal network model. However, if CWSs are designed using
a skeletonized (i.e., an incomplete) network model and then
implemented, they will be used in actual system, which is
better approximated by the original network model. The per-
formance of transplanted designs is discussed next.

Again using Network N1, the plots in Fig. 2 compare
(1) estimated impacts obtained when the CWS designs de-
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Figure 1. Worst-case impact versus dose level for original and non-
transplanted, worst-case CWS designs for Network N1. Results are
shown for the original model and three levels of network skele-
tonization (trims).

veloped using the skeletonized models are transplanted into
the original network model with (2) impacts estimated for the
CWS designed using the original network model. The plots
also show estimated worst-case impacts when no CWS is
used. Note the logarithmic scales on the vertical and horizon-
tal axes. The differences between the impacts estimated for
the designs developed for the original and the skeletonized
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Figure 2. Worst-case impact versus dose level for original and
transplanted worst-case CWS designs for Network N1. Results are
shown for the original model and three levels of network skele-
tonization (trims).

network models for Network N1 generally become larger
when the designs for the skeletonized network model are
transplanted into the original network model.

The analysis presented in this paper used an injection mass
of 0.5 kg. If desired, figures that provide results as a function
of dose level can be rescaled to show results for different in-
jection masses. The plots in Figs. 1 and 2 and in other figures
that present results as a function of dose level would have the
same shape if a different injection mass were used. However,

if the injected mass is changed by some factor, the values
on the horizontal axis also need to be changed by the same
factor. For example, if the injection mass is 5 kg instead of
0.5 kg, the values on the horizontal axis in Figs. 1 and 2 need
to be multiplied by 10. Use of a different injection mass in
our analysis would not affect the conclusions presented in
this paper.

The plots in Fig. 3 provide a comparison for Network N1
of the impacts obtained using designs developed for the
skeletonized network models when they are used in the
skeletonized network models (non-transplanted designs) and
when they are transplanted into the original network model.
The same design is being used, but evaluated using different
network models. Depending on the dose level and number
of sensors, the impacts estimated for Network N1 can be 2
to 3 times larger when the designs are used in the original
network rather than in the skeletonized network where they
were developed. In other words, evaluating a CWS using the
skeletonized network model for which it was designed can
yield results that considerably underestimate the actual con-
sequences that could occur if the design were used in the ac-
tual WDS. There is no consistent pattern in impacts or rela-
tive impacts related to the level of skeletonization used. Note
that the somewhat jagged nature of some of the lines in the
plots in Fig. 3 is the result of using only five points to con-
struct the lines in the plots in this (and other similar) figures.

The estimated percentage reductions in impacts obtained
using the CWSs designed for Network N1 relative to the
worst-case impacts estimated for the network when no CWS
is used are shown in the plots in Fig. 4. (When no CWS is
used, the relative reduction in impacts is 0 %.) The reduction
in impacts for low dose levels (contaminants with relatively
high toxicity) can be similar and substantial (generally near
or > 90 % for dose levels below about 0.01 mg) for the orig-
inal and transplanted designs. However, at higher dose levels
(contaminants with relatively low toxicity), the reduction in
impacts obtained with transplanted designs can be consider-
ably smaller than that obtained with the original design. The
reduction in impacts does not show a consistent relationship
with the level of skeletonization. Percentage reduction in im-
pacts decreases as dose level increases. Consequences asso-
ciated with less toxic contaminants generally are more lo-
calized than those associated with more toxic contaminants
because of the larger quantity of contaminant required to pro-
duce a similar health effect. CWSs are less effective in pro-
viding protection against localized effects than effects that
are more widespread.

Impacts estimated for CWSs designed using Network N3
are shown in the plots in Fig. 5, which provides results sim-
ilar to those in Fig. 2 for Network N1. The results for Net-
work N3 are more consistent than those for Network N1, with
impacts generally increasing with increasing level of skele-
tonization. The plots in Fig. 6 give the ratio of impacts for
transplanted and non-transplanted designs for Network N3.
The ratios are generally larger than those for Network N1
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Table 3. Ratios of worst-case impacts obtained with transplanted and original CWS designs. Ratio refers to the ratio of the worst-case
impact obtained with the transplanted design divided by the worst-case impact obtained with the worst-case design developed using the
original network model. Minimum (Min.), median, and maximum (Max.) values for the ratio are given for the nine ratios determined for the
three sensor set sizes and the three skeletonizations.

Ratio of worst-case impacts

Network N1 Network N3

Dose level (mg) Min. Median Max. Min. Median Max.

Transplanted worst-case design

10−4 1.1 2.2 4.0 1.0 1.4 6.3
10−2 1.0 2.1 4.1 1.0 2.3 6.6
1.0 1.3 1.4 1.5 1.1 1.6 2.2

Transplanted mean-case design

10−4 1.0 1.7 4.3 1.3 5.6 6.3
10−2 1.0 1.8 4.2 1.1 2.8 6.6
1.0 1.2 1.3 1.5 1.3 1.6 2.2

(Fig. 3) when 10 or 25 sensors are used. (Note the difference
between the vertical scales used in Figs. 3 and 6.) When de-
signed and evaluated using the skeletonized network models
for Network N3, the results for designs with 10 or 25 sen-
sors underestimate by a factor of 2 to 8 times the impacts
expected if the design were used in the actual network, a
larger underestimate than for Network N1. For five sensors,
the underestimate can be as much as a factor of 2. As is the
case for Network N1, the percentage reductions in impacts
at larger dose levels achieved using the transplanted CWS
designs are generally considerably less than those obtained
using designs developed using the original network model,
as shown in Fig. 7.

The relative performance of the transplanted worst- and
mean-case CWS designs for Networks N1 and N3 is summa-
rized in Table 3. Performance is relative to the performance
of a CWS designed to minimize worst-case impacts using
the original network model. For several dose levels, the ta-
ble gives the range (maximum and minimum values) in the
ratios of worst-case impacts obtained with the transplanted
design to the worst-case impacts obtained with the original
worst-case design, as well as the median value of the ratio.
The results shown for each network and dose level are based
on the nine ratios determined using three sensor set sizes and
three levels of skeletonization. For example, for the 1.0 mg
dose level for Network N1 and the transplanted worst-case
design, the minimum value of the ratio of worst-case impacts
obtained with the transplanted worst-case design to the im-
pact obtained with the original worst case design is 1.3. The
largest value of the ratio is 1.5 and the median for the nine
ratios is 1.4.

The results in Table 3 indicate that for Networks N1 and
N3 the relative performance of the transplanted worst-case
designs generally becomes poorer when the dose level is

smaller than 1.0 mg. In particular, the median and maximum
values of the ratios for the two networks generally increase
when the dose level decreases below 1.0 mg. The maximum
ratios are generally considerably larger for Network N3 than
for Network N1, indicating that the relative performance of
the transplanted designs is network-dependent. Note that al-
though the relative performance of the transplanted designs is
poorer at smaller dose levels, the reduction in impacts, both
percentagewise and in absolute terms, is considerably better
at smaller dose levels than at 1.0 mg.

The results in Table 3 also show that the relative perfor-
mance of the transplanted mean-case designs deteriorates
when the dose level decreases below 1.0 mg. The results in
the table show that the relative worst-case performance of the
transplanted mean-case designs is generally similar to the rel-
ative worst-case performance of the transplanted worst-case
designs: the ratios for the transplanted mean-case designs are
generally similar to the corresponding ratios for the trans-
planted worst-case designs.

CWS performance is influenced by the network nodes con-
sidered as possible injection locations. Figure 8 provides re-
sults for Network N1 similar to those shown in Fig. 2 except
that only NZD nodes are used as injection locations. Dif-
ferences in the performances of the transplanted designs ob-
tained with all nodes (Fig. 2) or only NZD nodes (Fig. 8) are
noticeable when 10 or 25 sensors are used. Worst-case im-
pacts with no CWS are somewhat smaller when only NZD
nodes are used relative to those obtained when all nodes are
considered as possible injection locations.

3.2 CWS performance: individual sensors

The preceding discussion has examined the performance of
CWSs as systems. Examining the performance of individ-
ual sensors in those systems provides some additional in-
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Figure 3. Relative worst-case impacts for transplanted and non-
transplanted worst-case CWS designs for Network N1. Results are
shown for three levels of network skeletonization (trims).

sight into how the overall systems perform. CWS designs
were developed considering their performance when chal-
lenged by the possible injection of contaminants at any node
in the network or at any NZD node. A CWS can detect some
of the events, but, in general, with a limited number of sen-
sors will not detect all events. The worst-case performance
of a CWS is determined by the largest impact associated
with any event that occurs before an event is detected by a
sensor. For Network N1 with a five-sensor CWS and injec-
tions at NZD nodes, the sensors detect about 3500 events
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Figure 4. Reduction in worst-case impacts obtained with original
and transplanted worst-case CWS designs for Network N1 relative
to impacts obtained when no CWS is used. Results are shown for the
original model and three levels of network skeletonization (trims).

out of about 11 000, for a dose level of 10−4 mg. The num-
ber of events detected for the original network model does
decrease somewhat as the level of skeletonization increases,
from about 3600 for the original design to about 3500 for the
20 cm transplanted design and to about 3450 for the 40 cm
transplanted design. About 7000 events have not been de-
tected by any sensor when the CWS designs first detect an
event. The maximum impacts for undetected events are about
5000, 4800, and 5700 for the original, 20 cm, and 40 cm de-
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Figure 5. Worst-case impact versus dose level for original and
transplanted, worst-case CWS designs for Network N3. Results are
shown for the original model and three levels of network skele-
tonization (trims).

signs, respectively. The optimization process should mini-
mize worst-case impacts but does not attempt to minimize
other impacts, either detected or not. For the case considered
here, the largest impacts for undetected events are smaller
than the worst-case impacts. Therefore, it is not unexpected
that the largest undetected impact for the original design
(5000) is somewhat larger than the largest undetected impact
for the 20 cm transplanted design (4800).
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Figure 6. Relative worst-case impacts for transplanted and non-
transplanted worst-case CWS designs for Network N3. Results are
shown for three levels of network skeletonization (trims).

The performance of the individual sensors in the five-
sensor CWS design developed using the original network and
the five-sensor, 20 and 40 cm transplanted designs is shown
in Fig. 9 for a dose level of 10−4 mg. Note that the vertical
scale on the plot for the 20 cm design is different from the
vertical scale used in the other two plots. The figure shows
results considering NZD nodes as injection locations. The
general locations of the five widely spaced sensors in the
three designs are similar and the sensors are arbitrarily la-
beled as Sensors 1 through 5, consistently for all the designs.

www.drink-water-eng-sci.net/11/49/2018/ Drink. Water Eng. Sci., 11, 49–65, 2018



58 M. J. Davis and R. Janke: Influence of skeletonization on CWS design

10−4 10−3 10−2 10−1 1

0

10

20

30

40

50

60

70

80

90

100
5 sensors

No CWS

10−4 10−3 10−2 10−1 1

0

10

20

30

40

50

60

70

80

90

100
10 sensors

No CWS

10−4 10−3 10−2 10−1 1

0

10

20

30

40

50

60

70

80

90

100
25 sensors

No CWS

Trim (cm)

0
20
30
40

R
ed

uc
tio

n 
in

 w
or

st
−c

as
e 

im
pa

ct
s 

(%
)

Dose level used for design (mg)

Network N3 worst−case designs

Figure 7. Reduction in worst-case impacts obtained with original
and transplanted worst-case CWS designs for Network N3 relative
to impacts obtained when no CWS is used. Results are shown for the
original model and three levels of network skeletonization (trims).

For the detected events, the impacts at the time the events
are detected were sorted in ascending order for each of the
five sensors and plotted against event number, starting with
the lowest impact event for Sensor 1 and continuing using a
cumulative count of events through the highest impact event
for Sensor 5. The numbering of events in the three plots in
Fig. 9 is independent. The highest impact for any event de-
tected by any sensor is the worst-case impact for the CWS
unless a higher impact is associated with any of the unde-
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Figure 8. Worst-case impact versus dose level for original and
transplanted, worst-case CWS designs for Network N1, nonzero de-
mand nodes only. Results are shown for the original model and three
levels of network skeletonization (trims).

tected events. No undetected events with such higher impacts
occur for Network N1 and five sensors, as noted above.

In Fig. 9, the results for each of the five sensors are pre-
sented from left to right, with the results labeled with the
sensor number in the upper plot. As an example of how to
interpret the plots in the figure, in the upper plot the results
for Sensor 4 begin at about Event 800 and continue to about
Event 2200; about 1400 events are detected by this sensor.
The maximum impact for any impact detected by the sensor
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Figure 9. Performance of individual sensors for five-sensor, worst-
case CWS designs for Network N1 and a dose level of 10−4 mg
obtained using nonzero demand nodes as possible injection loca-
tions. Sensor numbers (1 through 5) are shown in the upper plot.
Results are presented for CWSs developed using the original net-
work model and two skeletonized models. Evaluations of CWS per-
formance used the original network model.

is about 2500. The highest impact for any event detected by
any sensor is over 5000 for Sensor 5. This is the worst-case
impact for the CWS.

The performance of the sensors varies substantially be-
tween the original and transplanted designs. The worst-case
impact for the original design is over 5000, as already noted,

over 16 000 for the transplanted 20 cm design, and over 5000
for the transplanted 40 cm design, similar to that for the orig-
inal design, but for a different sensor. The three worst-case
impacts in Fig. 9 correspond to the worst-case impacts in the
upper plot in Fig. 8 for a dose level of 10−4 mg. Figure 8
shows that the worst-case impacts for the original and 40 cm
designs for five sensors are similar at that dose level. Figure 9
shows that these impacts were the result of events observed
by different sensors. Although not shown in the figure, the
events in the two cases are also different. Figure 8 suggests
that the original and 40 cm, five-sensor designs perform sim-
ilarly for a dose level of 10−4 mg. In fact, the similarity re-
sults from sensors in different parts of the network detecting
different events with the same impacts.

3.3 Robustness of mean- and worst-case designs

Figures 10 and 11 provide a direct comparison of the worst-
case impacts obtained with the transplanted mean- and worst-
case designs for Networks N1 and N3. The figures are scat-
terplots of the impacts obtained with the two types of trans-
planted designs. Note the logarithmic scales on the vertical
and horizontal axes. For each network, results are given for
three sensors set sizes, three levels of skeletonization, and
five dose levels, for a total of 45 comparisons in each figure.
Some points in the figures overlap or are clustered closely to-
gether. For points that lie above the diagonal lines in the fig-
ures, the transplanted mean-case design yields smaller worst-
case impacts than the transplanted worst-case design. For
points below the lines, the worst-case design yields smaller
impacts. For points on the line, both designs provide the same
impacts.

For Network N1 there are 27 points in Fig. 10 that lie
above the diagonal line, 9 points that lie on the line, and
9 points that lie below the line. For the comparisons used in
Fig. 10, the transplanted mean-case designs yield worst-case
impacts that are less than or equal to those yielded by the
transplanted worst-case designs in 36 of the 45 cases for Net-
work N1. The transplanted worst-case designs yield worst-
case impacts that are less than or equal to those obtained
for the transplanted mean-case designs in 18 of the 45 cases.
For the 27 instances in which impacts for the worst-case de-
signs exceed those for the mean-case designs, the impacts are
about 34 % larger on average. For the 9 instances in which the
impacts for the mean-case designs are larger, they are about
59 % larger on average. Considering only NZD nodes (not
plotted), the transplanted mean-case designs perform as well
as or better than the transplanted worst-case designs in 32 of
the 45 cases; transplanted worst-case designs perform as well
as or better than transplanted mean-case designs in 28 of the
45 cases.

For Network N3 there are 6 points in Fig. 11 that lie above
the diagonal, 27 points that lie on the line, and 12 points that
lie below the line. The transplanted mean-case designs yield
impacts less than or equal to those for the worst-case designs
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Figure 10. Comparison of worst-case impacts for transplanted
mean- and worst-case CWS designs for Network N1 (numbers and
arrows indicate overlapping or clustered points).

in 33 of the 45 cases for Network N3. The transplanted worst-
case designs yield worst-case impacts that are less than or
equal to those obtained with the transplanted mean-case de-
signs in 39 of the 45 cases. For the 6 instances in which im-
pacts for the worst-case designs exceed those for the mean-
case designs, the impacts are about 96 % larger on average.
For the 12 instances in which the impacts for the mean-case
designs are larger, they are about 120 % larger on average.
Considering only NZD nodes (not plotted), the transplanted
mean-case designs perform as well as or better than the trans-
planted worst-case designs in 28 of the 45 cases; transplanted
worst-case designs perform as well as or better than trans-
planted mean-case designs in 38 of the 45 cases.

For the two networks studied, the mean-case designs de-
veloped using the skeletonized network models yield results
that are comparable to those obtained with the worst-case de-
signs developed using the skeletonized network models when
the designs are transplanted into the original network models.
Mean-case designs perform somewhat better for Network N1
and somewhat poorer for Network N3. As discussed above,
mean-case designs are more robust than worst-case designs
when the objective is to minimize worst-case impacts and
there is uncertainty concerning the conditions of a contam-
ination event. The results presented here for Networks N1
and N3 indicate that transplanted mean-case and worst-case
designs can be similarly robust when used to estimate worst-
case impacts in the original network models. The small sam-
ple size limits the ability to make any more general conclu-
sions about the overall robustness of mean-case designs un-
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Figure 11. Comparison of worst-case impacts for transplanted
mean- and worst-case CWS designs for Network N3 (numbers and
arrows indicate overlapping or clustered points).

der conditions of uncertainty in the network model. Evalua-
tions using additional networks would be helpful.

4 Conclusions

On the basis of the two networks examined, lack of struc-
tural detail in the network model results in worst-case CWS
designs that perform more poorly than worst-case designs de-
veloped using the original all-pipes network model. The rel-
ative performance of the designs developed using incomplete
network models, as measured by the reduction in worst-case
impacts, generally improves as the dose level decreases. Nev-
ertheless, at smaller dose levels (more toxic contaminants)
a lack of network model detail can yield CWS designs that
have worst-case impacts several times larger than those ob-
tained using a much more complete network model.

Designing and evaluating a CWS using an incomplete net-
work model can result in a substantial underestimate of the
consequences that could occur if the design were used in the
actual WDS. The difference depends on the network, dose
level, and number of sensors; however, for the cases consid-
ered in this paper, estimated impacts can increase by a factor
of 2 to 8 times when the design is evaluated using the com-
plete network model.

Although lack of model detail generally has an adverse ef-
fect on CWS performance, no simple relationship was found
between the degree of skeletonization and loss of perfor-
mance. For the two networks studied, the relationship de-
pends on the number of sensors used in the CWS.
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In spite of the negative effect of loss of network model
structural detail on CWS performance, CWSs designed using
incomplete network models can provide substantial reduc-
tions in adverse consequences compared to results obtained
when no CWS is used, except at high dose levels (less toxic
contaminants), for which consequences tend to be localized
near the injection location. Reductions at low dose levels are
generally above 70 % for the skeletonized networks and con-
sequences considered.

Proper understanding of the basis for CWS performance
requires an understanding of the performance of the individ-
ual sensors used in the CWS. As discussed for Network N1,
apparently similar overall performance of two different CWS
designs can be associated with very different results for the
individual sensors in the system.

Mean-case designs developed using incomplete network
models can provide worst-case results that are generally
comparable to those obtained with worst-case designs devel-
oped using the same incomplete models, consistent with a
conclusion that mean-case designs can provide robust results
under conditions of uncertainty. However, results for more
networks are needed before any broader conclusions can be
made.

Improvements in network models, by reducing the uncer-
tainty in their structural details, have the potential to yield

significantly better performing CWSs. The magnitude of the
potential improvement depends on the degree of the improve-
ment in the network model and the nature of the contami-
nants of most concern. However, the results for the networks
examined here suggest that a reduction in worst-case impacts
by a factor of as much as about 2 or more is possible for
contaminants whose effects are not localized near the injec-
tion location (cf. Table 3). In addition, evaluations of the ex-
pected performance of CWSs designed using all-pipes mod-
els should provide considerably more realistic results than
evaluations of designs developed with incomplete network
models, which yielded substantial (2 to 8 times) underesti-
mates of impacts for the two networks examined.

The results presented here should be useful to those re-
sponsible for designing or implementing CWSs, in particu-
lar managers and engineers in water utilities. Hopefully, the
results will help provide motivation for the improvement of
existing network models.

Data availability. The original and skeletonized network models
(.inp files) for Network N1 are available in the Supplement. The
model for Network N3 is proprietary and cannot be shared.
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Appendix A: Skeletonization

We skeletonized Networks N1 and N3 using a commer-
cial software package, InfoWater® Skeletonizer (Innovyze,
2005). This package allows three methods to be used for
skeletonization, namely branch trimming, parallel pipe merg-
ing, and series pipe merging. It maintains total network de-
mand by recalculating and reallocating demands at all af-
fected nodes. Pipes with check valves or controls are not in-
cluded in the skeletonization process. Because the order in
which trimming and merging are performed can affect the
configuration of the skeletonized network (Innovyze, 2005),
we followed a consistent process when skeletonizing net-
works.

We began the skeletonization process by specifying the
pipe diameters to be considered (namely ≤ 20, 30, and
40 cm) using a query in the software’s domain manager. Net-
works were then skeletonized; dead-end pipes were trimmed,
series pipes were reduced, and equivalent pipes were ob-
tained by merging parallel pipes and then series pipes. (The
software has specific options for (1) dead-end trimming,
(2) series pipe reduction, and (3) maintaining hydraulic
equivalency.)

When we performed dead-end trimming, we did not use
any secondary options. Therefore, maximum trimming re-
ductions were carried out for each iteration of the trimming
process. When series pipe reduction was carried out, we
specified that the pipe ID/attribute retain choice be large
diameter and that the demand distribution method be near-
est junction. No additional options were used for series
pipe reduction. Secondary options were specified for hy-
draulic equivalency: larger diameter was selected for the
pipe ID/attribute retain choice as was the equivalent diam-
eter check box. We performed parallel and series merges us-
ing the merge parallel and merge series options. The number
of junctions was not affected by the former; there was some
decrease in the number of pipes. The series merge reduced
the number of both pipes and nodes.

We consistently and iteratively carried out trimming, re-
ducing, and merging, both parallel and series, on each net-
work. We first performed trimming, then reducing, and fi-
nally merging for each of the three trim levels used. Five it-
erations were carried out to achieve maximum reduction in
the number of pipes and nodes. Parallel merging was always
done before series merging and was executed immediately
after using the reduction option.

Appendix B: Hydraulic effects of skeletonization

Skeletonization affects estimated flow velocities and, con-
sequently, water ages. Table B1 provides mean and median
flow velocities for the original and skeletonized versions of
Networks N1 and N3. Mean and median velocities increase
substantially with the first level (20 cm) of skeletonization
and then plateau or decrease slightly with additional skele-

Table B1. Mean and median flow velocities, Networks N1 and N3,
determined for the last 24 h of a 168 h simulation, using a 1 h hy-
draulic time step.

Flow velocity (m s−1)

Network Mean Median

N1 0.08 0.04
N1 20 cm 0.13 0.09
N1 30 cm 0.14 0.09
N1 40 cm 0.14 0.09
N3 0.17 0.05
N3 20 cm 0.29 0.13
N3 30 cm 0.29 0.13
N3 40 cm 0.28 0.13

tonization, consistent with the results reported by Bahadur et
al. (2008).

The skeletonization process removes pipes with diameters
below a certain size. The process largely influences flow ve-
locities in pipes with diameters that are affected by the trim-
ming process. Tables B2 and B3 provide statistics on flow
velocities for pipes in Networks N1 and N3, with diameters
that are affected and unaffected by the trimming process. The
tables show results for both the original network models and
for the skeletonized models with 20 and 40 cm trims. Mean
flow velocities and velocities ranging from the 25th to the
95th percentiles in pipes with diameters less that or equal to
the trim level are substantially increased by skeletonization
for the two trim levels shown for both Networks N1 and N3.
However, there is little change in the statistics for flow veloc-
ities for pipes with diameters greater than the trim level. For
example, compare velocities in Table B2 for Networks N1
and N1 20 cm for pipes with diameters less than or equal to
20 cm. The skeletonized network has a considerably higher
mean velocity (0.10 versus 0.06 m s−1), as well as consid-
erably higher velocities for the four percentiles shown. In
the same table, compare velocities for Networks N1 and N1
40 cm for pipes with diameters greater than 40 cm. The mean
velocities (0.33 and 0.32 m s−1), as well as velocities for the
four percentiles shown, are similar for the original and skele-
tonized models. Note in Tables B2 and B3 that the fraction
of pipes with diameters at or below the trim level is generally
substantially larger than the portion with diameters above the
trim level, even after skeletonization, especially for the 40 cm
trim. For example, from Table B3, the fraction of pipes in
Network N3 with diameters greater than 40 cm is only 0.04
and for N3 40 cm it is only 0.13.

Table B4 provides statistics on water ages for the original
and trimmed models for Networks N1 and N3. Mean water
age for the original and skeletonized models for Network N1
decreases with the level of skeletonization, as do the 25th,
50th, 75th, and 95th percentile water ages. Results are similar
for Network N3, except for the median water age for the 30
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Table B2. Network N1 flow velocities, determined for the last 24 h of a 168 h simulation, using a 1 h hydraulic time step.

Flow velocity (m s−1)

Pipes Percentile

Network Dia.a (cm) Fractionb Mean 25th 50th 75th 95th

N1 ≤ 20 0.83 0.06 0.01 0.03 0.08 0.22
N1 > 20 0.17 0.17 0.05 0.12 0.25 0.55
N1 20 cm ≤ 20 0.53 0.10 0.02 0.06 0.13 0.30
N1 20 cm > 20 0.47 0.18 0.05 0.12 0.24 0.55
N1 ≤ 40 0.97 0.07 0.01 0.03 0.09 0.27
N1 > 40 0.03 0.33 0.13 0.32 0.50 0.67
N1 40 cm ≤ 40 0.87 0.11 0.03 0.07 0.15 0.35
N1 40 cm > 40 0.13 0.32 0.15 0.32 0.48 0.68

a Pipe diameters considered. b Fraction of network pipes included.

Table B3. Network N3 flow velocities, determined for the last 24 h of a 168 h simulation, using a 1 h hydraulic time step.

Flow velocity (m s−1)

Pipes Percentile

Network Dia.a (cm) Fractionb Mean 25th 50th 75th 95th

N3 ≤ 20 0.78 0.11 0.01 0.04 0.12 0.44
N3 > 20 0.22 0.41 0.06 0.24 0.60 1.33
N3 20 cm ≤ 20 0.52 0.19 0.04 0.09 0.22 0.65
N3 20 cm > 20 0.48 0.40 0.06 0.25 0.58 1.28
N3 ≤ 40 0.96 0.16 0.01 0.05 0.17 0.66
N3 > 40 0.04 0.60 0.19 0.50 0.89 1.72
N3 40 cm ≤ 40 0.87 0.24 0.05 0.11 0.27 0.86
N3 40 cm > 40 0.13 0.57 0.20 0.49 0.80 1.59

a Pipe diameters considered. b Fraction of network pipes included.

and 40 cm trims, which has stabilized at 7.9 h. The effect of
skeletonization on mean water age for the two networks is
consistent with the findings of Bahadur et al. (2008).

Table B4. Water ages, determined for the last 24 h of a 168 h sim-
ulation, using a 1 s water-quality time step and a 1 h hydraulic time
step.

Water age (h)

Percentile

Network Mean 25th 50th 75th 95th

N1 29.3 11.0 18.1 33.7 105.4
N1 20 cm 23.5 8.8 14.5 27.7 70.0
N1 30 cm 19.6 8.5 13.5 25,2 53.5
N1 40 cm 18.0 8.2 12.8 23.7 49.3
N3 16.2 6.9 11.1 17.7 43.2
N3 20 cm 14.3 5.5 8.6 13.4 38.3
N3 30 cm 13.3 5.1 7.9 12.2 36.7
N3 40 cm 12.5 5.0 7.9 11.2 32.3
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