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Abstract. Hydraulic state estimation in water distribution networks is the task of estimating water flows and
pressures in the pipes and nodes of the network based on some sensor measurements. This requires a model of
the network as well as knowledge of demand outflow and tank water levels. Due to modeling and measurement
uncertainty, standard state estimation may result in inaccurate hydraulic estimates without any measure of the
estimation error. This paper describes a methodology for generating hydraulic state bounding estimates based on
interval bounds on the parametric and measurement uncertainties. The estimation error bounds provided by this
method can be applied to determine the existence of unaccounted-for water in water distribution networks. As a
case study, the method is applied to a modified transport network in Cyprus, using actual data in real time.

1 Introduction

Hydraulic state estimation in water distribution networks
(WDNs) is a challenging task due to the presence of mod-
eling uncertainties, such as structural uncertainty introduced
by skeletonization of the network, parameter uncertainty
of pipe roughness coefficients and uncertainty in water de-
mands. While this last uncertainty can be reduced by the use
of real-time flow measurements, these measurements come
with their own instrument uncertainties and noise (Hutton
et al., 2014).

In standard state estimation techniques, statistical char-
acterization of sensor measurement error is needed to give
more weight to measurements originating from more accu-
rate sensors. Using the weighted least squares method, the
nodal demands are adjusted to fit the constraints imposed by
the measurements and produce the most probable state es-
timate (Davidson and Bouchart, 2006). Another approach is
the Kalman filter (KF) method which provides a solution for
the network state based on the available measurements. The
standard KF performs poorly in nonlinear looped WDN due
to the use of a linearized system model (Kang et al., 2009).
Overall, the above methods generate a point in state space

and are referred to as point state estimation (Andersen et al.,
2001).

Most point state estimation methods assume a known sta-
tistical characterization of the measurement error. This could
lead to significant estimation errors, especially in the case
when pseudo-measurements are used, which are estimates
determined from population densities and historical data.
The use of pseudo-measurements may be necessary when
there are not enough sensors to guarantee the observability
of the network. In this case, no measure of the estimation
error is available. Additionally, in order for point state es-
timation methods to produce feasible solutions, model cali-
bration is required a priori or during state estimation (Savic
et al., 2009; Kang and Lansey, 2011).

An alternative approach for the representation of measure-
ment and model parameter uncertainty is the use of bounds.
In contrast to traditional point state estimation methods, the
use of bounding uncertainty can provide upper and lower
bounds on the state variables. This method is referred to
as interval state estimation. In this work a hydraulic inter-
val state estimation methodology is described and its use
is demonstrated with a case study of a modified transport
network of a water utility in Cyprus. An application of this
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method for determining the existence of unaccounted-for wa-
ter in the network is presented.

The use of measurement bounds for the representation
of measurement uncertainty and their incorporation into the
state estimation cost function was introduced by Bargiela and
Hainsworth (1989). Interval state estimation was developed
by Gabrys and Bargiela (1997) as the so-called set-bounded
state estimation problem. An implicit state estimation tech-
nique for leakage detection for an idealized grid network un-
der steady conditions was presented by Andersen and Powell
(2000). A straightforward method for interval state estima-
tion is the use of Monte Carlo simulations (MCS), which
under some assumptions converge to the true uncertainty
bounds by randomly generating and evaluating a large num-
ber of parameter sets or realizations (Eliades et al., 2015).
The interval-based approach used in this paper has the ad-
vantage of calculating algorithmically the bounded state esti-
mates in a way that guarantees the inclusion of the true state.
MCS, even with a large number of simulations, cannot guar-
antee that all possible cases will be simulated. The applica-
bility of the proposed algorithm is thus suitable for event and
fault-detection methodologies that require strict bounds on
state estimates.

In many applications, such as leakage detection and con-
tamination detection, the derivation of a range of possible
values for the state of the WDN provides useful information
for event and fault-detection methodologies. Hydraulic state
bounds can be used to generate bounds on chlorine concen-
tration in the water network or other chemicals in the wa-
ter, by taking into consideration the uncertainty in decay rate
(Vrachimis et al., 2015). When additionally this bounded es-
timate is generated in real time, it helps to reduce the time of
detecting water leakages and prevent catastrophic scenarios
such as water contamination.

The paper is organized as follows: Sect. 2 formulates
the problem of hydraulic state estimation and describes a
methodology to solve this problem based on the Iterative
Hydraulic Interval State Estimation (IHISE) algorithm. In
Sect. 3, a case study is presented in which this method is ap-
plied to a modified real transport network. Finally, we discuss
the application of this method for determining the existence
of unaccounted-for water in the network.

2 Hydraulic interval state estimation

A water transport network is modeled using a directed graph,
for which nodes represent water sources, junctions of pipes
and water demand locations, and the links represent pipes.
Each pipe is indicated by the index j, where j € {1,..,np)}
and ny, is the number of pipes. These are characterized by
pipe length, diameter and roughness coefficient, parameters
which are generally assumed known. Pipe parameters are
used to compute the Hazen—Williams (H-W) resistance co-
efficients 7, which are in turn used to formulate the energy
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conservation equations of a water network (Boulos et al.,
2006).

Modeling uncertainty in a WDN is considered in this work
to arise from insufficient knowledge of pipe parameters. The
uncertain parameters are represented using intervals, with the
actual value of the parameter being within a corresponding
interval. For notational convenience, the parameters repre-
senting intervals will be denoted with a tilde. Any uncertain
parameters in pipe j will be included in 7; € [r}, r}l] The
interval parameter 7; is the uncertain H-W coefficient for
pipe j, with r}. and r}.‘ being the lower and upper bounds of
each coefficient, respectively.

Nodes are indicated by the index i, where i € {1,..,n,}
and n, is the number of nodes with an unknown head, thus
excluding the nodes that represent water sources. In this work
we consider water transport networks in which sensors mea-
sure all the water demands at nodes, which, typically, are the
inflows of district metered areas (DMAs). Measurements ar-
rive at a fixed time interval from sensors that may not be
accurate, and each measurement is associated with a certain
measurement error. The uncertainty of each measurement is
given as a percent error of the measurement, and it is modeled
as an interval with the measurement being the mean value
of the interval. Measured water demand at node i is then
given by the interval geys; = qéxt’i, qé]xt,i , Where qéxt’l. is
the lower bound on water demand and qut’i is the upper
bound.

The unknown state vector of the WDN is denoted by x =
qg" h']T € R", where h € R" are the unknown heads at
nodes, g € R"» are the water flows in pipes and n = n, +ny.
These are computed by formulating the conservation of en-
ergy and mass equations, as formulated by Todini and Pilati
(1987). The matrix formulation for a general looped water
distribution system, which also includes the uncertain param-
eters and variables as intervals (denoted with a tilde), is given
by

|: An(?i) A12:||: §:| — [ _hexti| (1)

Ay 0 ||k Doxt |’
where 17111(q~) € R™*"r is a diagonal matrix containing the
nonlinear terms 7;|g;|"~", Aj2 = A5, € R">>" is the inci-
dence flow matrix that indicates the connectivity of nodes
with links, v = 1.852 is a constant associated with the H-
W coefficient and h.,; € R"? is a vector that contains the
known heads in each equation. For simplicity, we assume
that measurements of the tank levels are available; thus, h.y;
is known.

Equation (1) represents a system of nonlinear equations,
which include interval parameters, and it is referred to in the
literature as a nonlinear interval parametric (NIP) problem
(Kolev, 2014). The objective is to find the smallest interval

~ ~T 3T . .
state vector x = [qT h 17 that contains all the solutions of
this system of equations for every value contained in the in-
terval parameters. To solve the NIP problem given in Eq. (1),
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Figure 1. A diagram illustrating how the IHISE algorithm works in
a real-time framework.

an algorithmic technique named iterative hydraulic interval
state estimation (IHISE) was developed by the authors. The
IHISE method comprises five steps: (1) find initial bounds
on the state vector x. (2) Use interval linearization to remove
nonlinear terms from Eq. (1) and transform them into a sys-
tem of linear interval parametric (LIP) equations. (3) Formu-
late a linear program (LP) using the system of LIP equations.
(4) Solve the LIP problem. (5) Iteratively tighten the bounds
on x and approximate the solution of the NIP problem.

Figure 1 illustrates how this technique is implemented in a
real-time framework. At discrete time instant k, the measure-
ments from the sensors in the network are received, which
include the water outflow ¢,,,;(k) and the water level in
tanks. The measured tank level at each time instant is used
to calculate the known head vector h..;(k) of the network.
Since these equations only depend on the current time in-
stant k, the discrete time notation is omitted. The uncertainty
of these measurements is inserted by converting them into
intervals with the measurement as the mean value. The hy-
draulic equations of Eq. (1) are then formulated using the
new measurements. Modeling uncertainty is represented by
including the interval parameters 7; in the equations.

The first step of the IHISE algorithm is to impose initial
bounds on the state vector x. The initial bounds should be
an outer interval solution of Eq. (1) (Kolev, 2014). An outer
interval solution includes all the point solutions of Eq. (1),
but it is not the smallest possible interval. Bounds on the un-
known head vector k can be chosen using physical properties
of the network such as the minimum head of each node and
the maximum head that pumps and water sources can add
to the network. After finding an initial interval for the un-

~(0 . . .
known heads h( ), the special structure of Eq. (1), in which
each equation contains only one flow state g;, allows us to

use E(O) and interval arithmetic to find the initial bounds on
the flows g(©.

In the second step, the nonlinear terms present in Eq. (1)
need to be linearized in order for the system of equations
to be transformed into a LIP problem and solved (Kolev,
2004a). This is achieved using interval linearization (Kolev,
2004b). Given a range of values for the state X in which in-
terval linearization will be performed, each of the nonlinear
functions is enclosed between two lines and an interval term
represents the linearization uncertainty. In the third step, the
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LIP equations are formulated into a LP with constraints. The
interval terms in these equations are transformed into con-
straints of the LP and a suitable cost function ensures that
the solution of this problem will give either the minimum or
maximum of a certain state.

To get an interval solution of the whole state vector x, in
step four, the LP formulated is solved for all the states by
changing the cost function. At the end of this step, an in-
terval solution for the linearized system of equations is de-
rived. The new bounds on state vector x are then checked
for convergence in step five. The criterion for convergence is
that the relative change in bounds e at iteration m must be
smaller than a specified small number €, where € defines the
largest allowable absolute error for the calculated bounds of
each state, e.g., for flow states € = 0.01 (m>h~!). The rela-
tive change in bounds e is computed as follows:

oM — ’(xu(m) _xl(m)) _ (xu(m—l) _xl(m—l)) , )

1

where x* and x! indicate the upper and lower bounds of the
state x, respectively. The algorithm then gives the final state
bounds calculated as the result. Otherwise, the new bounds
are used as initial bounds and the algorithm re-iterates from
step two.

3 Case study

This study uses data from a real water transport sub-network
in Cyprus. A modified version of the transport network is
used, of which an illustrative diagram is shown in Fig. 2.
The modified network contains three loops and comprises
9 demand nodes, one water tank and 12 links which repre-
sent pipes. Flow sensors (F) are installed at demand nodes,
which represent aggregated real measurements at entrances
to DMAs, and a water level sensor (L) is installed in the
tank. Sensor measurements arrive at fixed 5 min intervals.
The tank’s water input originates from four water sources,
of which three are water dams and one is a desalination unit.
The water inflow go coming from these sources is measured
with a flow sensor. The water outflow g; of the tank is not
directly measured.

3.1 Real-time hydraulic interval state estimation

The implementation of this case study in real time is based
on a platform for real-time monitoring of WDN against hy-
draulic and quality events. A model of the transport network
was created as an EPANET input file. Using the platform, one
can select the dates with available sensor data and request a
state estimation. The available measurements from demand
nodes and the level of the tank are then retrieved and a data
validation process takes place which replaces missing data.
Sensor measurements have an uncertainty which is defined
by the installed sensor’s specifications. The measurements
given by the flow sensors are within +2 % of the actual flow
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Figure 2. Illustrative diagram of the water transport network of this
case study.

at those locations. Modeling uncertainty is also present in the
form of pipe parameter uncertainty. For this case study we
assumed a total uncertainty of +2 % in the Hazen—Williams
coefficient. The value of this uncertainty may vary, as it is
calculated using expert-elicited bounds on the modeled pipe
parameters. It is assumed that the network graph is known,
and thus structural uncertainty is neglected. This is a valid as-
sumption in transport networks where the structure is known,
as it is the network in this case study.

Using the IHISE algorithm, bounds on water flows and
pressures in the network are generated using the flow mea-
surements at demand nodes and the tank level measurements,
by taking into account measurement and modeling uncer-
tainty. The algorithm needs approximately 4s to calculate
bounds for each hydraulic step, on a personal computer with
Intel Core i15-2400 CPU at 3.10 GHz. The bounds converge
after eight iterations. The size of bounds does not increase
over time because it depends only on the measurements of
that specific time step. The effect of accumulating uncer-
tainty due to the dynamic calculation of tank levels does not
affect the size of the bounds in this case study, because the
tank level is measurable. For illustration purposes, flow and
pressure estimates using a real-time EPANET-based state es-
timator are also generated. The state estimates for a selected
pipe and node, accompanied by its corresponding uncer-
tainty bounds generated by the IHISE algorithm, are shown
in Fig. 3.

3.2 Determining the existence of unaccounted-for water
using bounds on state estimates

A common practice in water utilities is to use mass balance
to determine whether there is unaccounted-for water exiting
the network. In this case study, since there is no sensor mea-
suring the tank outflow g1, mass balance can be checked by
generating an estimate of g using two different sets of data:
the first is by calculating the sum of all the measured outflow
(demands), indicated here by gf (k); the second is the cal-
culation of the tank outflow using the measured tank inflow
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Figure 3. State estimate (black line) and bounds on this estimate
using the IHISE algorithm (blue area) for the water flow in pipe

3 (a) and the head at node 9 (b).
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Figure 4. (a) Comparison of two estimates of the tank outflow,
qi’(k) and q{’(k). (b) Comparison of the uncertainty bounds gen-
erated by the IHISE algorithm for the same estimates.

qo(k) and tank water level measurement /(k), indicated here
by q{’(k), as follows:

g7 k) = qo(k) — (er/ A1) Ahy(k), )
Ahy(k) = hi(k) — hi(k — 1),

where «; is the base area of the tank and A¢ = 5 min is the
measurement time step.

Using data from the case study network, the two tank out-
flow estimates were calculated for a period of 2 days, from
“24 August 2016 23:10” to “26 August 2016 23:10”. The two
estimates are compared in Fig. 4a. It can be observed that the
two estimates have a non-zero difference at almost all time
steps. This can be due to noisy data, and thus it cannot be de-
termined with certainty whether there is unaccounted-for wa-
ter. A way to deal with this is to calculate the average differ-
ence eq between these data for the given period of time, i.e.,
eq =mean(q{ (k) —q{’(k)), V k € {1.. .ks}, where kg is the total
number of measurements from each sensor. This calculation
gives a constant unaccounted-for flow eq = 18.82(m>h~1),
which may be due to background leakages, or it may be due
to non-uniformly distributed measurement errors. Checking
the water utility leakage reports of the examined period, there
was no recorded leakage for the sub-network of this study.
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Using the IHISE algorithm and the given model and mea-
surement uncertainties, bounds on these same estimates can
be calculated: the bounds on tank outflow by simulating the
network using the network outflow and tank level measure-
ments are indicated by g (k), and bounds on tank outflow
using the tank inflow and tank level measurements are indi-
cated by c?f (k). The comparison of these two sets of bounds
is shown in Fig. 4b. The two sets of bounds overlap, indicat-
ing that the variance can be explained by measurement and
modeling uncertainty. There are some specific time steps that
the bounds do not overlap, which may be due to noisy data
that can be eliminated using a suitable data validation strat-
egy. It can also be observed that bounds generated by the
tank level and tank inflow measurements are wider. This is
because these bounds are calculated using the dynamic equa-
tion Eq. (3) which uses three uncertain measurements for the
calculation of the bounds.

3.3 Determining the existence of an artificial leakage
using bounds on state estimates

In this section the potential of the IHISE algorithm to be used
for event detection in water distribution systems is demon-
strated. An artificial leakage is added to the network model,
an approximate location of which is indicated in Fig. 2. The
leakage has a magnitude of 20 (m> h~!) and its time profile is
described by an abrupt constant outflow starting at “26 Au-
gust 2016 00:10”.

In order to determine the location of the leak, additional
measurements should be available. Assuming the existence
of pressure sensors in the network, a comparison of the mea-
sured pressure with the estimated pressure could indicate the
presence of a leak. However, in this case, the measurements
are affected by not only the sensor uncertainty (as when cal-
culating mass balance), but also by the network modeling
uncertainty, which may greatly affect the pressure estimates.
Using the ITHISE algorithm, the effect of both measurement
and modeling uncertainties is considered in calculating the
bounding estimates, and the existence of a leak can be deter-
mined with greater certainty.

We assume the existence of a pressure sensor at node 9 of
the network as shown in Fig. 2. The pressure sensor reading
is compared with the IHISE bounding estimates, as shown
in Fig. 5a. The error between the pressure sensor reading
and the estimated bounds, which is defined as the distance
of the reading from the bounds when the reading is outside
the bounds, is also calculated, and is shown in Fig. 5. It is
observed that there is a pressure sensor reading error after
the leakage occurs. The error presents only during the night
hours, when the pressure is higher due to the low demand
and thus a pressure drop due to a leakage is more apparent.
Similarly, if we assume the existence of a flow sensor on pipe
12, the same effect can be observed when the flow reading is
compared with the IHISE bounds, as shown in Fig. 5b. There
is a flow sensor error during the night hours, while the error

www.drink-water-eng-sci.net/11/19/2018/

(a) Pressure head h, at node 9

(b) Waterflowq, in pipe 12

51.5

51

Flow (m®h'")

50.5

Pressure head (m)

A A0 A0 A A0
o0 2% o™ "~ % o o0 2%

o°
o s o o o

%
B
%

Head error (m
s 5
S 3
8B 2 o
>
%
S
Flow error (m® b
o N

S
S

e
o0
P )

Date & time Date & time

Figure 5. The effect of a leakage occurring in the network at time
“26 August 2016 00:10” on a pressure (a) and a flow (b) state, com-
pared to the estimated uncertainty bounds for the same states calcu-
lated by the IHISE algorithm. Below each graph, the corresponding
error of the state compared to the calculated bounds is presented.

persists in smaller magnitude for the rest of the day. These
observations indicate the existence of the leakage despite the
measurement and modeling uncertainties in the network.

4 Conclusions

In this work we described a methodology for real-time hy-
draulic interval state estimation, to monitor water transport
networks. Using real-time uncertain measurements from a
real transport network, the proposed Ilterative Hydraulic In-
terval State Estimation (IHISE) algorithm generates bounds
on hydraulic states of the network, by taking into account
the measurement uncertainty and modeling uncertainty in
the form of uncertain pipe parameters. The applicability of
this methodology is demonstrated by using it to determine
the existence of unaccounted-for water in the network and
also to detect an artificially created leakage. Extension of this
work will use the generated bounds to apply fault-diagnosis
methods to localize leakages in the network. Additionally,
the bounds on hydraulic states of the network will be used to
generate bounds on water quality states, since the dynamics
of hydraulic and quality states of a water network are inter-
connected.

Data availability. The EPANET file for the network depicted
in Fig. 2, with realistic water demands, can be found in
https://doi.org/10.5281/zenodo.1185136.
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