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Abstract. Currently, the proper utilization of water treatment plants and optimizing their use is of particular
importance. Coagulation and flocculation in water treatment are the common ways through which the use of
coagulants leads to instability of particles and the formation of larger and heavier particles, resulting in improve-
ment of sedimentation and filtration processes. Determination of the optimum dose of such a coagulant is of
particular significance. A high dose, in addition to adding costs, can cause the sediment to remain in the filtrate,
a dangerous condition according to the standards, while a sub-adequate dose of coagulants can result in the re-
ducing the required quality and acceptable performance of the coagulation process. Although jar tests are used
for testing coagulants, such experiments face many constraints with respect to evaluating the results produced
by sudden changes in input water because of their significant costs, long time requirements, and complex rela-
tionships among the many factors (turbidity, temperature, pH, alkalinity, etc.) that can influence the efficiency
of coagulant and test results. Modeling can be used to overcome these limitations; in this research study, an
artificial neural network (ANN) multi-layer perceptron (MLP) with one hidden layer has been used for modeling
the jar test to determine the dosage level of used coagulant in water treatment processes. The data contained in
this research have been obtained from the drinking water treatment plant located in Ardabil province in Iran. To
evaluate the performance of the model, the mean squared error (MSE) and correlation coefficient (R2) parame-
ters have been used. The obtained values are within an acceptable range that demonstrates the high accuracy of
the models with respect to the estimation of water-quality characteristics and the optimal dosages of coagulants;
so using these models will allow operators to not only reduce costs and time taken to perform experimental jar
tests but also to predict a proper dosage for coagulant amounts and to project the quality of the output water
under real conditions.

1 Introduction

Due to the rapid economic development as a result of pop-
ulation growth, the scarcity of water resources has been a
serious issue for many decades. As a result, this has become
a pressing issue in formulating sustainable development poli-
cies (Daghighi et al., 2017). Water treatment plant operations
means decreasing the final price of the produced water in a
way that achieves an optimum combination of efficiency and

affectivity (Ng et al., 2016). The aim of this study is to un-
derstand the management of chemical substances to decrease
the final cost of water, in which, for very similar inputs, the
amount of coagulating chemicals required to decrease water
turbidity is determined.

Water turbidity is one important and significant parameter
when water treatment plants obtain their input water from
natural resources like rivers or lakes (Nahvi et al., 2018).
In a water treatment plant, water turbidity must be resolved
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along with water sterilization to ensure water clarity; other-
wise the refined water is in no way usable for drinking pur-
poses (Ndabigengesere et al., 1995). Materials called coagu-
lants are used to decrease water turbidity, with the required
amount depending on the environmental conditions (Nord-
mark et al., 2016) such as temperature, pH, the amount and
type of turbidity, etc. The required amount is usually deter-
mined by performing an experiment called a jar test. Since
these experiments are time-consuming and also have errors,
they do not always provide a correct estimate of the opti-
mum amount of coagulant, and they may increase the cost of
chemicals used and diminish the management capability of
the treatment plants to appropriately decrease the chemical
requirements (Shamsnejati et al., 2015). Therefore, propos-
ing new models for estimating the optimum amount of co-
agulant seems an appropriate way to alleviate costs and gen-
erally improve the health of drinking water (Lamrini et al.,
2005).

Most particles that cause water to become opaque have
the feature of hydrophobicity and are often settled by sim-
ple gravitational force as time passes, but there may be some
smaller particles that cause water color such as hydro oxides
(known as colloids) or acids such as humic acid and folic acid
that are organic acids. These are all hydrophilic and tend to
not settled. Bacteria are also colloidal particles and are not
separated in the basic coagulation phase (Franceschi et al.,
2002).

Modeling is an important math-based tool typically per-
formed in one of the following ways:

– numeric or deterministic methods

– data-driven methods

Data-driven techniques have been receiving considerable
attention in the field of process monitoring due to their easy
implementation and less requirements for the underlying
model (Yin et al., 2016). Deterministic data-driven methods
are divided into classical statistical (multi-variable regres-
sion) and machine learning. Although conventional modeling
has been used to describe biological procedures, it has been
based on writing the equations for the speed of growth of the
microorganisms, the consumption of the substrate, and the
forming of the product, because microbiological reactions
are non-linear and time dependent with a rather complicated
nature, such models have many restrictions. The structure of
data-driven models is often simpler than that of deterministic
models and they provide a more general view of the nature
of the issue that recognize the applicable relationships be-
tween the efficient parameters as a necessary part of the prob-
lem. Also, in gaining knowledge of the relationships between
the parts of the model, a need arises for solving complicated
equations, and in some situations the answers cannot be ob-
tained under general conditions. Thus, numerical methods
will not be used in this study. In the linear multiple-variable
regression model, there are a great many assumptions, and

using them all in practical problems causes issues. In per-
forming research, because these assumptions represent com-
plex statistical issues, they many be hidden from researchers’
eyes and not taken seriously (Hornik, 1993). The proposed
model would not have the required accuracy, so these types
of models cannot be used in problems demanding high accu-
racy (Homada and Al-Ghusian, 1999).

Artificial neural networks (ANNs) are one of the machine
learning methods used in many scientific fields today. An
ANN is a machine learning method able to anticipate non-
linear and complex relationships between inputs and outputs,
and is often used to replace linear multiple-variable regres-
sions. ANNs are a set of non-linear techniques that do not
require the choice of a pre-determined mathematical model,
because the relationships between input and output variables
are automatically set by the utilized algorithm, so ANNs can
be a good choice for solving those problems in which cer-
tain relationships between the variables are either not known
or describing them would be difficult. The ANN was first
proposed by McCulloch and Pitts in 1943 (McCulloch and
Pitts, 1943) and ANNs have already been successfully used
to model salinity, nutrient concentrations, air pollution, and
algal growth (Maier and Dandy, 2001; Daghighi, 2017).

Despite using a very simple structure, its speed and the
power of the calculation was strongly noted. The regular ar-
chitecture of ANNs consist of three layers: the input layer
(distributes the data sent into the network), the hidden layer
(processes the data), and the output layer (extracts the results
as per certain inputs). A network can have several hidden lay-
ers.

Theoretical tasks performed in the field have shown that
a hidden layer for these models can approximate virtually
any complicated and non-linear function (Maier and Dandy,
2005; Cybenko, 1989; Hornik et al., 1989), as proven by ex-
perimental and practical results (Homada and Al-Ghusian,
1999; Oliveira-Esquerre et al., 2002).

Recent research studies show that determining statistical
dimensions can enhance the capability and improve the per-
formance of neural models (Maier and Dandy, 2000). An-
alyzing the main components is a technique for transform-
ing the orthogonal components and if needed, for decreasing
the number of dimensions of the variables, decreasing the
number of variable dimensions used for correction, and im-
proving the operation of the models developed in the ANN.
This technique is a regular and practical method for data with
several dimensions (Bui et al., 2016). The issue of recogniz-
ing the pattern which the data obeys – especially when there
are more than two dimensions – is a very difficult task and
the relationships usually cannot be graphically depicted. This
method is for analyzing the problems in which several fac-
tors are important in the issue studied. The use of this tech-
nique makes things easier by making a model for simulat-
ing the biological refining process using an ANN. Research
studies have shown that the simultaneous application of the
techniques of combined analysis of the main components and
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Table 1. Ranges of available data. NTU represents nephelometric turbidity units.

The characteristics of the input water The characteristics of the output water

pH Temperature Alkalinity Turbidity pH Temperature Alkalinity The Final
(◦C) (mEq L−1) (NTU) (◦C) (mEq L−1) Turbidity (NTU)

Max 7.9 24 264 16 8.2 17.5 235 1.3
Min 7.1 7 201 7 7.2 9.5 180 0.5

the ANN produces better and more accurate results than the
situation of considering them separately (Oliveira-Esquerre
et al., 2002), so this study will use the same method (Zhang
and Stanley, 1999; Baxter et al., 1999) by using the multi-
layer perceptron (MLP) structure for the ANN for anticipat-
ing the turbidity and the color of the refined water at the
Rossdale Water Treatment plant in Alberta, Canada. Gagnon
et al. (1997) used the method of inverse models in ANNs,
a similar method, for anticipating the necessary amount of
alum for the Sainte-Foy Waste Water Treatment Plant in Que-
bec, Canada (Joo et al., 2000). Modeling has also been per-
formed for the Chungju Wastewater Treatment Plant in Ko-
rea. Van Leeuwen prepared an ANN model based on the
jar test procedure for use on the collected surface waters in
southern Australia (Van Leeuwen et al., 1999). In the studies
mentioned, because of the lack of proper output parameters,
the ruling equations of the prepared models were not able to
adapt themselves to output variable changes.

Zhang and Stanley (1999) added the refined water turbid-
ity factor as an input parameter to the water characteristic pa-
rameters in their ANN for anticipating the optimum amount
of alum for use in the Rossdale Water Treatment Plant. Yu did
the same for the Taipei water treatment plant in Taiwan by
applying a greater number of parameters, preparing his three
ANN models for anticipating the proper amount of alum nec-
essary for coagulation (Yu et al., 2000). According to the
studied background, this method can be used for anticipating
the proper amount of coagulant that in this research will be
determined using the data from the Ardabil province drink-
ing water treatment plant and for determining the available
effective factors in the ANN, including the error percentage
that can be passed up, the amount of experimental expenses,
and the time needed for performing the jar test, all of which
can be reduced by preparing the model and using the results.

Modeling by the use of ANNs reduces test time and cost,
and decreases the necessity of performing experiments cur-
rently being performed in the drinking water treatment plant
of Ardabil province. In addition, there is no need to know the
type of input and output parameters or the quality of perform-
ing the process. By only providing the data to the program
in numeric form, the determined answer is obtained along
with all the effective factors on the process (which in this
project are the temperature, pH, the degree of alkalinity, and
the turbidity; according to the accessible data of the treatment
plant). The factors are hidden in the data and the ANN has

the capability to recognize complex and unknown systems.
Thus, in this research, the following aims are being studied:
to anticipate the optimum amount of coagulant, to analyze
the collected data, to determine the best type of ANN for the
purpose of modeling with the lowest error, to determine the
optimum amount of coagulant in the process of coagulation
and flocculation, and to validate the operation of the devel-
oped models.

Using this model would allow the operators of a water
treatment plant to avoid time and cost wastage, and decrease
the need to perform some of the experiments that are cur-
rently being performed in the drinking water treatment plant
of Ardabil.

2 Methodology

2.1 Data

The available data related to the drinking water treatment
plant in Ardabil province have been collected over 2 years
and the data ranges are presented in Table 1.

2.2 Data division and pre-processing

The 112 accessible information points have been catego-
rized into three groups using the Bowden model (Bowden
et al., 2002): (1) a training group for setting up the connec-
tion weights, (2) a testing group for knowing when to cease
training and optimizing the structure of the ANN and the
specifications of the internal model (for example, the rate
of learning, the momentum), and (3) a validating group for
testing the model’s capability for generalizing the model for
the range of information used for calibration. This method
uses a self-organizing map (known as a SOM) for categoriz-
ing the high-dimensional input–output information in two-
dimensional space (Kohonen, 1982). Then, information to be
used for training, testing, and the validation have been cho-
sen and, as a result, they contain values from each group.
This act makes sure that all three groups of information have
all the data patterns and so properly represent the statistics
of the population. Clustering the information into the groups
of testing and training makes sure that over-fitting will not
happen and that the data used for validation will not be used
for developing the model in any capacity.
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Figure 1. Scatter plots of actual versus predicted values for the validation data obtained using model 1 (a) Actual pH, (b) Actual Alkalinity,
(c) Actual Turbidity, and (d) Actual Temperature.

Table 2. Models inputs and outputs.

The characteristics of the input water The characteristics of the output water Alum dose

pH Temperature Alkalinity Turbidity pH Temperature Alkalinity The Final
Turbidity

Mod 1 I I I I O O O O I
Mod 2 I I I I I I I I O

The use of this method has resulted in 80, 10, and 10 % of
points in the training, testing, and validation, respectively.

For data standardization and also to increase the accuracy
and decrease the error (in both prepared models), all data
were normalized before being entered into the model using
the normal distribution function:

z=
(x− x)

SD
, (1)

in which x is the primary amount, x is the average of the data,
and SD is the standard deviation.

2.3 Choice of model inputs

2.3.1 Model 1 – prediction of treated water-quality
parameters

The model for anticipating the quality of the output water
was first prepared. In this model, after normalizing the in-
put data (turbidity, alkalinity, temperature, and pH), an MLP
ANN with one hidden layer and 15 neurons (produced by

trial and error) was used in the MATLAB ANN toolbox. In
this model, the data related to the pure input water (turbidity,
alkalinity, temperature, and pH), the amount of coagulant,
the model inputs, and the quality of the output water (tur-
bidity, temperature, alkalinity, and pH) have been included.
Categorizing variables for using them in an ANN can be per-
formed in many different ways. To determine the end time of
the training period and compare the generalization capability
of different models, parallel validation, a method often used
in ANN models, is used. In the parallel validation, a sepa-
rate group of data is used for experimentally examining the
ability of different models to generalize with respect to the
different levels of training. Since data for this separate group
must not be in the training or validation groups, the data are
randomly categorized into three groups. The group related
to network training (about 80 % of all input data), through
which network weights are determined; the group monitor-
ing network training (about 10 % of all data), through which
the network error is studied to retrain the network with re-
spect to end time calculations to make a decision; and the
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Figure 2. Comparing the coagulant dose real data with predicted
data in 3 steps and in form of general.

validation group (also about 10 % of all data) that studies the
capability of the network after its training. Training occurs up
to the time at which the error related to the monitoring data
group decreases, at which point the training is stopped. By
using this method, also called the stop training algorithm, use
of more complicated architectures in designing the network
is provided to the operator without having any over-fitting
problem, and by using some of the factors happening while
the problem is in the network. The standards mentioned play
an important role in this method (Standard Methods, 1998).
Figure. 1a–d are related to the data validation that have been
prepared by calculating the error of the model and analyz-
ing the amount of difference between the real data and the
anticipated data reached using 10 % of the data.

2.3.2 Model 2 – prediction of optimal dose (process
inverse model)

Model 2, representing the goal of this research, anticipates
the amount of necessary coagulant according to the input
characteristics of the input water and the desired standard wa-
ter characteristics. In this model, after normalizing the input
data, an MLP ANN with one hidden layer and 16 neurons
(produced by trial and errors) was used. In this part, accord-
ing to the real inputs taken from the water treatment plant,
the final model was built, and the necessary pure input water
and the output water characteristics are given to the model,
with the amount of the necessary coagulant is given as the
output. Table 2 demonstrates the inputs of both models.

 

 

 Figure 3. Related figure for learning model No. 2 and validation of
model.

 

Figure 4. The graphical user interface (GUI) of the Model No. 1

3 Results and discussions

The results produced by using Model 1 (related to pH, al-
kalinity, temperature, and turbidity) are shown in Fig. 1a–d,
with the related R2 and mean squared error (MSE) shown
in Table 3 for the 112 data points. The model has accom-
plished reasonable accuracy in predicting all three parame-
ters of the treated water quality, the R2 values from 0.94 for
anticipating the amount of alkalinity and 0.85 for anticipat-
ing the pH. The mean square errors for the prediction of tur-
bidity (measured in nephelometric turbidity units, NTU) are
also relatively small (errors of 0.011 NTU, 0.01 pH, 0.67 ◦C
and 26.31 mg L−1).

In model 2, The results of the optimum coagulant dose
obtained, by using model 2, are shown in Figs. 2 and 3, with
the corresponding amounts of R2 and MSE shown in Table 4.
The model has also achieved reasonable accuracy in predict-
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Figure 5. The Graphical User Interface (GUI) of the Model No. 2.

Table 3. The Results of the Neural Model No .1.

Model Output R2 MSE

1 pH of Treated water 0.85 0.01
1 Alk of Treated water 0.99 1.86
1 Turb of Treated water 0.9 0.024
1 Tempt of Treated water 0.93 0.67

ing the amount of the residual aluminum of the treated water
with an R2 of 0.93 and a MSE of 0.37 mg L−1.

Finally, a user-friendly model has been prepared for use
by the operator. The prepared software is a graphical user in-
terface (GUI) generated by the MATLAB software. Figure 4
illustrates how the operator can observe the results related to
output water quality by entering the input water data and the
amount of coagulant in Model 1.

Also for Model 2, another user-friendly GUI was pro-
grammed containing various parameters such as pH, alkalin-
ity, temperature, and turbidity for both raw and treated water.
After having all input data, the optimum coagulant dosage
result is given, as shown in Fig. 5.

4 Conclusions

In this research, the simulation of the jar experiment in the
flocculation and coagulation unit at the Ardabil province
drinking water treatment plant have been studied using, for
the first time, an ANN of type MLP. Using this method,
two models were created to enable presentation of water-
quality characteristics after coagulation and flocculation and
anticipating the optimum amount of the coagulant related to
changing characteristics of the input water in the minimum
possible time and by the highest accuracy.

By choosing effective parameters in the jar test, some pa-
rameters such as the color and hydraulic parameters like the
clarifier overflow rate have been taken into consideration, in

Table 4. The Results of the ANN No. 2.

Model Output R2 MSE

2 Training Coagulant dose 0.98 0.09
2 Validation Coagulant dose 0.93 0.37
2 Test Coagulant dose 0.85 0.48
2 All Coagulant dose 0.95 0.12

addition to the parameters considered in this research (tem-
perature, pH, turbidity, and the amount of coagulant). As in
previous studies (because of not measuring the number of
parameters listed and not recording related data, and also be-
cause of the relatively small effect they have in comparison
to the considered parameters), we were not able to apply their
effects. Of course the considered parameters are among the
most important effective parameters and because extending
all the effective parameters in a single experiment was not
feasible, it is possible to consider the prepared model for the
results of this experiment as a good approximation.

Because the ANN model is a parametric method, if the
amount of recorded data is increased, the model accuracy
will increase. In this study, there were 112 recorded data
points used over a 2-year period, that included data related
to the input (pure) water, the output water, and the proper
amount of coagulant. Because of the absence of high rate
changes among the data and the absence of outlier data, there
was no need to prepare, analyze, and select the data. Since the
used components have different units and dimensions, they
cannot be compared in terms of average and standard devia-
tion, so they have been normalized. The training of the model
has performed well according to analysis of existing errors,
so the most prominent and the only weak point is access to
only a small amount of recorded data.

One notable suggestion for continuation of the study
would be utilization of other modeling methods, especially
other types of ANNs, and also the utilization of the resources
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with a greater amount of recorded data related to the jar ex-
periment.

Data availability. All data are available on the website of Ard-
abil’s Water and Waste Water Company (2018). All data are pub-
licly accessible and are reported in the Persian language in separate
tables for all years since 1 January 1991.
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