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Abstract. Nowadays, drinking water utilities need an acute comprehension of the water demand on their dis-
tribution network, in order to efficiently operate the optimization of resources, manage billing and propose new
customer services. With the emergence of smart grids, based on automated meter reading (AMR), a better un-
derstanding of the consumption modes is now accessible for smart cities with more granularities. In this context,
this paper evaluates a novel methodology for identifying relevant usage profiles from the water consumption
data produced by smart meters. The methodology is fully data-driven using the consumption time series which
are seen as functions or curves observed with an hourly time step. First, a Fourier-based additive time series
decomposition model is introduced to extract seasonal patterns from time series. These patterns are intended to
represent the customer habits in terms of water consumption. Two functional clustering approaches are then used
to classify the extracted seasonal patterns: the functional version of K-means, and the Fourier REgression Mix-
ture (FReMix) model. The K-means approach produces a hard segmentation and K representative prototypes.
On the other hand, the FReMix is a generative model and also produces K profiles as well as a soft segmen-
tation based on the posterior probabilities. The proposed approach is applied to a smart grid deployed on the
largest water distribution network (WDN) in France. The two clustering strategies are evaluated and compared.
Finally, a realistic interpretation of the consumption habits is given for each cluster. The extensive experiments
and the qualitative interpretation of the resulting clusters allow one to highlight the effectiveness of the proposed

methodology.

1 Introduction

All modern cities need to deal with increasing populations
and climate change while maintaining adequate water ser-
vices for consumers. Here, climate change is only mentioned
to emphasize the systemic changes inherent in any smart city.
Until now, water or energy consumption readings have tra-
ditionally been collected once or twice a year in large ter-
ritories (for example, regions or nations). With the arrival of
smart grid meters, this situation has changed, and indexes can
now be collected automatically with more granularities. The
management of smart cities (Giffinger et al., 2007; Nam and
Pardo, 2011) is based on automated electronic meters that are

deployed on the distribution network and are used to han-
dle billing and customer services. The first researches per-
formed in the area of demand patterns classification belong
to the electricity network fields (Irwin et al., 1986; Herndn-
dez et al., 2012). Most of the research in the water field is
focused on demand forecasting (Donkor et al., 2012). Sev-
eral approaches have been proposed for this purpose, includ-
ing statistical forcasting models (Adamowski, 2008; Blokker
et al., 2009). The emergence of smart meters shifts this re-
search to classification of water demand (Aksela and Aksela,
2010). McKenna et al. (2014) proposed a procedure for clas-
sification of water demands recorded from smart meters us-
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ing a Gaussian mixture model for feature selection and then
the classical K-means algorithm for clustering (MacQueen,
1967).

In various applications, the data to be analyzed are not
multivariate observations, but these can be seen as functions
or curves that are either continuous or discrete, namely func-
tional data. Such studies usually refer to functional data anal-
ysis (FDA) when data are varying in a continuum and po-
tentially infinite dimensional (Ramsay and Silverman, 2005;
Wang et al., 2015). Examples of functional data encompass
longitudinal data, responses in medical treatments and ob-
jects in video sequences.

In the current case of smart meters, each signal is seen
as a temporal function and is collected intermittently at dis-
crete time points. Analyzing smart meter consumption is
useful for water utilities in order to develop innovative ca-
pabilities in terms of grid management, planning and cus-
tomer services. Functional clustering aggregates data min-
ing techniques, which aim to identify homogeneous groups
among functional data without using prior knowledge about
their group labels (unknown cluster membership). Aiming to
analyze household consumption, Cardell-Oliver (2013) in-
troduces a methodology to cluster daily water use signa-
ture patterns based on expert rules and a classical K-means.
Many functional clustering methods have been developed
over the last decade. These methods can usually be sepa-
rated into two categories: nonparametric methods using spe-
cific distances or dissimilarities between curves (Dabo-Niang
et al., 2007), and mixture-model-based methods (Samé et al.,
2011; Jacques and Preda, 2014). The collected curves can be
multivariate, leading to a large representation space like in
(Cheifetz et al., 2013) for change-point detection based on a
specific curve modeling. The approach of the regression mix-
ture model proposed by Gaffney and Smyth (2003) motivated
the focus of this article.

This paper is organized as follows: the overall methodol-
ogy is described in Sect. 2. This methodology is decomposed
into two consecutive steps, that is to say, the extraction of
seasonal patterns from time series in Sect. 3, and the iden-
tification of clusters with their profiles in Sect. 4 based on
two clustering strategies: a functional version of K-means
and a dedicated expectation maximization (EM) algorithm.
Sect. 5 introduces the experimental data set, and an analysis
of the clustering results is given. Finally, the article ends with
a conclusion and some perspectives.

2 General methodology

The aim of this paper is to identify automatically the major
water usage patterns in a set of time series recorded by smart
water meters. A multi-step methodology is formulated to ad-
dress this problem, as illustrated in Fig. 1. The first step con-
sists in extracting the seasonal part of each time series, which
represents the habits of water consumption for each meter,
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using a Fourier-based time series decomposition. Then, these
seasonal components are normalized and used as input data
by clustering algorithms. Two algorithms are used to clas-
sify the functional data into various water usage clusters. The
first one consists in using the K-means jointly with the func-
tional principal component analysis (FPCA) method, and the
second one is based on a Fourier regression mixture model
recently introduced by Samé et al. (2016). Both the seasonal
extraction and clustering approaches are described in the next
sections.

3 Extracting seasonal patterns from time series

Let (yq,...,y,) denote n time series, where each one of
them, y; = (i1, ..., yiT), corresponds to hourly consump-
tions recorded by a single water meter, that is to say, y; is
a univariate time series and y;; is a real-valued scalar. It is
implicitly assumed that all the series are recorded over the
same time grid indexed by the ordered times {1,..., T} for
all n curves.

3.1 Fourier-based time series decomposition

The methodology developed in this paper is based on the fol-
lowing classical additive decomposition:

Vit = fir + Xir +dis +&ir, 9]
where

— fir is the global trend of the time series which is mod-
eled in a nonparametric way using moving averages
(Gourieroux et al., 1997), and

— xj; is the seasonal component. As the studied water con-
sumption time series are subject to daily and weekly
seasonality, a Fourier basis decomposition (De Livera
etal., 2011) is formulated:

q1 . .
2mjt 2wt
Xt = E |:a§.1)cos (%) + (x§-2) sin (%)}

j=1
L2 3) 2w jt ) . 2w jt
+j; o’ cos Tes +on. sin T63 ) |’ 2)

where g1 and g5 are the respective numbers of trigono-
metric terms used to handle the daily and weekly sea-
sonality, and a;.D R aj.z), oe(f), and oz5.4) are the coefficients
to be estimated. This trigonometric modeling has the
advantage of requiring considerably fewer parameters
compared to an approach based on dummy variables

(De Livera et al., 2011).

— dj; is a component devoted to capturing the effect of
exceptional public non-working days in France (e.g.,
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Figure 1. Block diagram describing the global methodology.

1 January, 1 May, Christmas Day). The following de-
composition is used: d;; = 234:1)/]-8,]-, where §;; = 1 if
t corresponds to the hour j of a non-working day and
8;j = 0 otherwise.

— & is a centered Gaussian noise.

For compliance with the additivity and Gaussianity as-
sumptions of this decomposition model, each time series
(Vit)i=1,...r was replaced by (log(yi; +A));=1,..,7, where A
is a small positive number preventing degeneracy caused by
null consumptions. Note that this transformation is used in
the same way as the well-known Box—Cox transformation
(Box and Cox, 1964).

3.2 Parameter estimation and practical use of the model

Given a time series y; recorded by a smart meter, the trend
[ is estimated using a simple moving average (Gourieroux
et al., 1997; Shumway and Stoffer, 2010). As the daily and
weekly periodicities (24 and 168) should be removed from
the univariate time series, a centered moving average of order
168 is performed.

After estimating the trend and given a couple (g1, g2), the
coefficients a1, azj, a3j, a4; and y; are simultaneously
identified by performing a multiple linear regression of (y;; —
fir) over the variables cos(zgf), sin (%), cos (%),
sin (21?8 ) and §;;. Selecting the couple (g1,¢>) remains a
sensitive point which can ideally be addressed by choos-
ing the couple which optimizes a model selection criterion
such as the Akaike information criterion (AIC) introduced by
Akaike (1974) or the Bayesian information criterion (BIC)
introduced by Schwarz (1978). In this paper, several combi-
nations of (g1, g2) were tested and the couple (4, 24) has been
selected, leading to a good compromise between visual rep-
resentation of seasonal patterns and modeling accuracy. An
example of decomposition of a time series is shown in Fig. 2.
The trend is displayed together with the complete time series,
while the seasonal component is displayed with the weekly
sub-series.

From each time series y;, the model parameters defined by
Eq. (1) are thus identified, and the periodic seasonal pattern
defined by x; = (x;1, ..., Xim), with m = 168, is extracted.
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Due to the periodicity of the series (xj¢, ..., xj7) defined by
Eq. (2), it should be noted that the first terms m = 168 are
sufficient to characterize the time series. Then, the set of
seasonal patterns (xy,...,x,) is standardized as suggested

by Gaffney (2004): x;; < — d (/, 'ZC))Z
o(x;) is the standard deviation of x;. lThe set of normalized
seasonal patterns is used as input data for the clustering step
which will be described in the following section.

It is worth noting that the proposed decomposition can
also be used to fill missing values that may occur along the
time serles The reconstructlon formulais y;; = f,t +Xi —i—d,t,
where f,,, Xit, and d,, are the estimated components.

=1%ij

,Vi,t, where

4 Clustering seasonal profiles

In order to extract relevant usage profiles from water con-
sumption time series, two functional data clustering ap-
proaches are considered in this paper: the first one is the func-
tional version of the K-means algorithm and the second one
is based on a specific Fourier regression mixture model.

4.1 Functional clustering based on FPCA

In this subsection, the clustering method (Peng and Miiller,
2008; Sood et al., 2009) is inspired by functional data analy-
sis (Ramsay and Silverman, 2005; Wang et al., 2015) which
assumes that data are functions or curves. This clustering ap-
proach is mainly based on functional principal component
analysis (FPCA) and can be summarized in the following two
consecutive steps.

Smoothing and dimension reduction This step consists in
converting the n time series (x1, ..., X,) into functional
objects (x(t),...,x,(t)) and then applying the classi-
cal PCA to the multivariate data obtained by discretiz-
ing the functions x;(¢) over the temporal grid {1, ..., m}.
In this paper, the PCA is directly performed on the sea-
sonal patterns (x1, ..., X,) that are based on trigonomet-
ric (smooth) functions, and the principal components
are selected such that 95 % of the data variance is ex-
plained.
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Figure 2. Extraction of periodic seasonal patterns using Fourier-based time series decomposition. The trend is displayed with the complete

time series (a) and the seasonal component is displayed with the weekly time series (b).

Clustering in this step consists of a classical clustering
method performed on the principal component scores
estimated previously. The well-known K-means algo-
rithm (MacQueen, 1967) is applied using several ran-
dom initializations and the partition with the lowest
intra-cluster inertia is selected.

The resulting functional clustering strategy is called
FPCA-KM. The number of clusters K has been selected
by minimizing the BIC-like penalized criterion BIC(K) =
C + vk log(n), where C is the intra-cluster inertia optimized
by the K-means algorithm and vg = K¢ is the number of
parameters to be estimated with ¢ the number of selected
principal components.

The general idea of PCA is to create a small number of un-
correlated variables with maximal variance. The extension of
this technique for functional data is proposed in the work of
Ramsay and Silverman (2005) and Ferraty and Vieu (2006).
The FPCA is an efficient tool providing common functional
components explaining the structures of individual trajecto-
ries.

4.2 Fourier regression mixture model

Inspired by the polynomial regression mixture model formu-
lated by Gaffney and Smyth (1999), this subsection intro-
duces a Fourier regression mixture model, called the FReMix
model. The Fourier regression mixture was preferred to poly-
nomial and spline regression mixtures for its compliance
with the modeling adopted in the first step (seasonal pattern
extraction). Moreover, a Fourier polynomial is a universal
approximator of functions and remains a good candidate in
modeling clusters whose prototypes are nonlinear and poten-
tially periodic functions.
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4.2.1 Model definition

Unlike standard vector-based mixture models, the density
of each component of the FReMix model is represented by
a trigonometric prototype function that is parameterized by
regression coefficients and a noise variance. The prototype
functions represent the class conditional expectations of x;.
The Fourier regression mixture model therefore assumes that
each time series x; is distributed according to the following
density:

K

f@xi:0) =" mN (xi:UBy. 071, 3)
k=1

where 0 =(711,...,nK,ﬂl,...,,BK,olz,...,012() is the com-

plete parameter vector. The probabilities m; are the pro-
portions of the mixture satisfying Zlf:lnk =1, B =
Br,1s -+ Br2(g1+92)) € [R2(@1+42) is the coefficient vector of
the kth regression model and O’k2 > 0 is the associated noise
variance. The matrix U = (uy,...,u,,) is a regression ma-
trix of size m x 2(q1 +¢»), where the vector u; € R*91+42) js
defined by (Vt =1,...,m):

2wt . (2wt 2rqit\ . [2mqqt
u; = |cos{ — ) sin{ — ) --- cos sin
24 24 24 24
2t . [ 2nt 2rqot\ . (2mqat\]
cos{ — ) sin{ — ) --- cos sin ,
168 168 168 168

and N (-; u, X) is the Gaussian density with mean vector u
and covariance matrix X. This specific mixture model corre-
sponds to the class-specific prototype functions gx(1) = B u;
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which is also given by

a1 2t (27t
gk(f)=2|:,3k,2j1COS( 24{ )—i—ﬁk,zjsm( 24{ )i|

Jj=1

L2 27 jit
+ Z |:/3k,2q1+2j—1 cos ( 168 )

j=1

. 27t
+Brk, 2, +2j Sin W . 4

4.2.2 EM algorithm and practical issues

Assuming that the n seasonal time series (xi,...,X5)
are independent, the parameter vector 6 is estimated
in the same way as for the classical Gaussian mixture
model (McLachlan and Krishnan, 2007) and the poly-
nomial regression mixture model (Gaffney and Smyth,
1999), by maximizing the specific log-likelihood L£(0)=
> log i me N (%3 UBy, 071) via the EM procedure
(Dempster et al., 1977; Gaffney and Smyth, 1999; McLach-
lan and Krishnan, 2007). The pseudo-code can be found in
the paper by Samé et al. (2016). As a reminder, the couple
(q1,92) = (4,24) is selected in the seasonal pattern extraction
step (cf. Sect. 3.2). The algorithm is initialized as follows:
the initial regression coefficients and variances are obtained
by performing a Fourier regression separately on K seasonal
series randomly drawn into the data set (xy,...,x,) and the
initial proportions of the latent classes are set to m; = %
This process is repeated 20 times and the parameters with the
highest log-likelihood are selected. The number of clusters is
selected through the BIC criterion (Schwarz, 1978) defined
by BIC(K) = —2£(é) + vk log(n), where 0 is the parameter
vector estimated by the EM algorithm, and v is the number
of free parameters of the model: vk =2K(q1 +g2+1)— 1.
After estimating the parameter vector 6, a time se-
ries partition is obtained by assigning each series x; to
the cluster having the highest posterior probability 7 =
nkN(xi;Uﬁk,akzl) .
Zf:l”i N(x,-;Uﬂg,afI)

5 Experimental study using real data

5.1 Description of the data set

The experimental data set represents the water consumption
recorded by a few smart meters deployed on the network of
the Syndicat des Eaux d’lle-de-France (SEDIF). The SEDIF
is a large association including 150 municipalities which
provides drinking water for more than 4 million inhabitants
of suburban Paris. This is the largest drinking water distri-
bution network (WDN) in France, with about 8000 km of
pipes and more than 750 000 m? of water produced each day.
The consumption is measured hourly (in liters) by 10233 m
during 15 months (from November 2013 to March 2015).
The resulting data set is then made of univariate time se-
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Figure 3. Evolution of the BIC criteria according to the number of
clusters.

ries (yq,...,¥,), where n =10233 and the length of each
time series y; is 7 =11016. After the extraction of peri-
odic seasonal patterns (cf. Sect. 3), a new set of time series
(x1, ..., Xx,) is built where the length of each seasonal pattern
x; is m = 168. These series are used as input data for the
clustering algorithms.

5.2 Selecting the number of clusters

The number of clusters for the two methods was selected by
running the algorithms with several values of K and then
choosing the value which minimizes the BIC criterion. Fig-
ure 3 shows the evolution of this criterion for the two cluster-
ing algorithms in relation to the number of clusters. For both
methods, the BIC criterion exhibits a decrease continuously,
while the K value increases. Nevertheless, it can be seen that
the variation of BIC is not significant when the number of
clusters is above eight. Therefore, the number of clusters is
selected such that K = 8.

5.3 Results interpretation and discussion

The seasonal time series are classified into K = 8 clusters,
using functional K-means (FPCA-KM strategy) and Fourier
regression mixture (FReMix model) as illustrated, respec-
tively, by Fig. 4a and b. For each cluster, the weekly pro-
totype is displayed in orange (sub-figures on the left). More-
over, the right plots of Fig. 4a and b display the cluster pro-
files using a daily representation, the colors (from blue to
red) indicating the day of the week (from Monday to Sun-
day). The percentage of input time series belonging to each
cluster is also provided.

It can be observed that the consumption profiles are quite
similar for the two methods, despite the differences in the
cluster percentages. As no socio-demographic data about
customers were available at this stage of the study, a qual-
itative evaluation of the results is performed and the pattern
repartition shown in Fig. 4 can be explained by the following
realistic categories.

Residential use Clusters 1,2, and 3. The temporal dynamic
of these clusters corresponds to customers who wake up

Drink. Water Eng. Sci., 10, 75-82, 2017
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Figure 4. Clustering results obtained with the FPCA-KM (a) and the FReMix (b). For each side, the subfigures on the left represent a
weekly view of the clusters with their prototypes displayed in orange. The subfigures on the right are daily prototypes resulting from the
segmentation of the weekly orange curves and colors (from blue to yellow to red) indicate the day of the week (from Monday to Sunday).

between 06:00 and 08:00, take a shower and then go to
work. This habit is characterized by a consumption peak
around 10:00 in the morning. The other peak, observed
in the evening at around 20:00, corresponds to the return
home. The minimum consumption level between these
two peaks can be attributed to persons in households
who stay at home during working hours.

Commercial use Clusters 4,5, and 6. This category corre-
sponds to a set of customers whose consumption habits
are the same during working days and weekends. It may
correspond, for example, to small businesses or medical
centers that stay open every day and have the same daily
consumption profile. It should be noticed that clusters
4 and 5 differ from the other clusters by their smaller
evening peak.

Office or industrial use Cluster 7. One can observe an ac-
tive water consumption from Monday to Friday (work-
days) during the business hours, and a very low con-
sumption during the weekend.

Noise cluster Cluster 8. This cluster, which has the largest
variance, groups a set of atypical patterns which does
not match with the other clusters. It can be considered a
noise cluster.

Note that a functional clustering scheme is adopted be-
cause this is suitable for dealing with the analysis of our con-
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sumption curves. Indeed, these real-valued data can be seen
as the realizations of a one-dimensional stochastic process,
recorded on the same time grid (hourly spaced) of ordered
times. In practice, data frames are frequently sent by modules
which are physically connected to the meters; each consump-
tion time series can be re-constructed based on a sequence of
the data frames. Exogenous variables (e.g., weather inputs or
meter localization) are not considered in this work due to a
non-significant improvement in the results, but might be used
in a future work.

Furthermore, the time series x; have a length of 168 due
to the trigonometric modeling of the chosen Fourier basis de-
composition. The Fourier coefficients are identified by per-
forming a multiple linear regression on the detrended global
time series y;, which limits the effect of a long seasonality.
Finally, our sample has a duration of 15 months (with five
seasons at most), and we are more interested in identifying
the major mode of consumption than estimating water de-
mand profiles with local changes and a fine granularity.

However, we wanted to integrate some prior knowledge
about day/week seasonality and exceptional public non-
working days. A Fourier-based decomposition has the capac-
ity to easily take into account this prior knowledge and this
decomposition is consistent with our probabilistic FReMix
model definition. A wavelet-based analysis could also be
used for decomposition (keeping some local properties along
temporal patterns), but integrating such prior knowledge

www.drink-water-eng-sci.net/10/75/2017/



N. Cheifetz et al.: Modeling and clustering water demand patterns 81

might not be straightforward and the number of parameters
in this case should not be reduced significantly. In this ar-
ticle, we evaluate a probabilistic method and a geometrical
approach. This second method is based on a K-means and
minimizes the intra-cluster inertia which can be seen as an
aggregated distance over the water time series. To our knowl-
edge, the complexity of time series distances (e.g., dynamic
time warping) can be prohibitive with a large time series data
set.

This paper deals with an unsupervised classification prob-
lem based on water consumption time series. Water demand
forecasting is not the issue in this paper; nevertheless, the re-
sulting segmentation of water consumption time series can be
used for several scientific problems, including sequential de-
tection, predictive classification or demand forecasting. We
assume no supervision in our setting due to a partial and un-
certain knowledge of the usage labels; users do not inform
systematically their water utilities when businesses change or
people come in/leave a home. This is why there is no quanti-
tative accuracy about clustering. Each log-consumption time
series is standardized before clustering, which leads to a dis-
crimination in terms of seasonal patterns and is not based
on water volume. This explains why we called cluster 1 “of-
fice and industrial usage”. Of course, industrial usage might
produce erratic water patterns which would be classified in
cluster 2. Partitioning the eight clusters into four categories
would suggest non-negligible variations in residential use as
well as commercial use, and extra investigations about the
users which should not be underestimated in terms of time
and cost. The EM algorithm used to fit the Fourier REgres-
sion Mixture (FReMix) model is flexible and can be refor-
mulated in a future work with a semi-supervision (by fixing
a set of posterior probabilities) or a partial supervision (e.g.,
using belief functions).

Identifying the major usage profiles from water consump-
tion is an interesting topic to water utilities. Indeed, the re-
sulting segmentation helps the water companies to gain bet-
ter knowledge about users consuming the distributed water.
The user has a better experience with the tools developed by
their water utility. For instance, users at Veolia Eau d’Ile de
France (Paris area in France) can already monitor their wa-
ter index/consumption on a dedicated website for free. Using
our clustering results, people could compare with similar pat-
terns and adapt their consumptions according to their needs.
In addition, the resulting clusters are used by an early warn-
ing system which alerts the user when a leakage occurs into
the private network. An erratic water pattern (like in cluster
2) can be a sign of a leakage and might initiate a corrective
action. Concerning the grid management, each prototype can
be used to represent the water behavior of users belonging to
the same cluster. Sampling a large amount of water meters is
useful for several topics (e.g., tracking the meter metrology,
estimating the global consumption modes based on a limited
number of meters); such sampling analysis is straightforward
using our meter segmentation.
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6 Conclusions and perspectives

A general methodology is introduced in this paper for au-
tomatically discriminating several water usages and extract-
ing relevant water consumption profiles from time series
recorded by smart meters. Considering that the consumption
habits are of interest and not the consumption levels, the first
step of the method consists in extracting the seasonal part of
time series using an additive classical decomposition model.
This modeling of the seasonal component is based on a spe-
cific Fourier expansion which takes into account daily and
weekly periodicities. As this study aims to identify relevant
water usage profiles, two functional clustering techniques are
used to classify the seasonal patterns extracted from the wa-
ter consumption time series: a functional variant of the K-
means algorithm and a specific EM algorithm based on a
Fourier regression mixture model (FReMix). The FReMix
model is richer than the other clustering approach in that the
Fourier basis decomposition is fully integrated in the mod-
eling and each cluster is described by its first two moments,
while the K-means only extracts the mean curves. Further-
more, the K-means produces a hard segmentation, while the
FReMix creates a soft partition where each cluster member-
ship is weighted by a posterior probability. Eight clusters are
then identified for the two clustering methods. The resulting
prototypes are quite similar for the two approaches and a re-
alistic category is given to each cluster.

More investigations are in progress with the water utility
Veolia Eau d’Ile de France in order to refine the clustering
results and the proposed methodology is also being applied
to a new large-scale database.
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