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Abstract. Rejections of pharmaceutical compounds (Ibuprofen, Diclofenac, Clofibric acid, Naproxen, Prim-
idone, Phenacetin) and organic compounds (Dichloroacetic acid, Trichloroacetic acid, Chloroform, Bromo-
form, Trichloroethene, Perchloroethene, Carbontetrachloride, Carbontetrabromide) by NF (Filmtec, Saehan)
and RO (Filmtec, Saehan, Toray, Koch) membranes were studied. Chloroform presented the lowest rejection
due to small molar volume, equivalent width and length. Diclofenac and Primidone showed high rejections
related to high molar volume and length. Dichloroacetic acid and Trichloroacetic acid presented good rejec-
tions caused by charge exclusion instead of steric hindrance mechanism influencing rejection. Bromoform
and Trichloroethene showed low rejections due to small length and equivalent width. Carbontetrabromide,
Perchloroethene and Carbontetrachloride with higher equivalent width than BF and TCE presented better re-
jections. A qualitative analysis of variables using Principal Component Analysis was successfully implemented
for reduction of physical-chemical compound properties that influence membrane rejection of PhACs and or-
ganic compounds. Properties such as dipole moment, molar volume, hydrophobicity/hydrophilicity, molecular
length and equivalent width were found to be important descriptors for simulation of membrane rejection. For
membranes used in the experiments, we may conclude that charge repulsion was an important mechanism of
rejection for ionic compounds. After analysis with Multiple Linear Regression, we also may conclude that
membrane rejection of neutral compounds was well predicted by molar volume, length, equivalent width, hy-
drophobicity/hydrophilicity and dipole moment. Molecular weight was a poor descriptor variable for rejection
modelling. We were able to provide acceptable statistical significance for important results.

1 Introduction

The presence of pharmaceutically activated compounds
(PhACs) and endocrine disrupters compounds (EDCs) in sur-
face waters has been reported, detailed and quantified in
many studies (Ternes, 1998; Hirsch et al., 1999; Heberer,
2002; Kolpin et al., 2002). Although pharmaceuticals are
generally taken up by the human organism, a significant
amount of the original substance is often excreted by the
human body, thus entering raw sewage and eventually end-
ing up in the aquatic environment. The fate of pharmaceu-
ticals in the environment has raised the interest of scien-
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tists because the accumulation of them may result in envi-
ronmentally significant concentrations with unknown effects.
It has been studied that conventional water treatment pre-
sented limitations in removing PhACs and EDCs (Vieno et
al., 2006; Adams et al., 2002). In that sense, many studies
have investigated the removal of micropollutants i.e. PhACs,
EDCs, by membrane treatment (NF, RO) and their sepa-
ration mechanisms such as size/steric exclusion, hydropho-
bic adsorption, partition and electrostatic repulsion (Kiso et
al., 2001a, b, 2002; Schäfer et al., 2003; Nghiem et al.,
2004; Kimura et al., 2003, 2004; Kim et al., 2005). Char-
acteristics such as MWCO, porosity, membrane morphology,
charge, and hydrophobicity of the membrane influence rejec-
tion of compounds (Schaep and Vandecasteele, 2001; Chil-
dress and Elimelech, 2000); compound properties such as
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molecular weight, molecular size, charge, dipole moment
and hydrophobicity can be used as predictors of rejection
in applications of membrane water treatment (Ozaki and Li,
2002; Van der Bruggen et al., 2000; Kiso et al., 2001a; Van
der Bruggen et al., 1999). However, there are disagreements
defining the importance of some descriptors, in that sense
our objective is to investigate a group of compound proper-
ties and membrane characteristics with a statistical approach
in order to model membrane rejection.

2 Background of statistics

2.1 Principal component analysis

A summary of principal component analysis is presented by
Landau and Everitt (2004). Principal Component Analysis
(PCA) is essentially a method of data reduction that aims to
produce a small number of derived variables that can be used
in place of the larger number of original variables to simplify
subsequent analysis of the data. The principal component
variablesy1, y2, . . . ,yq are defined to be linear combinations
of the original variablesx1, x2, . . . , xq that are uncorrelated
and account for maximal proportions of the variation in the
original data, i.e.,y1 accounts for the maximum amount of
the variance among all possible linear combinations ofx1,
. . . , xq, y2 accounts for the maximum variance subject to be-
ing uncorrelated withy1 and so on. Explicitly, the principal
component variables are obtained fromx1, . . . ,xq as follows:

y1 = a11x1 + a12x2 + . . . + a1qxq

y2 = a21x1 + a22x2 + . . . + a2qxq

...

yq = aq1x1 + aq2x2 + . . . + aqqxq (1)

Where the coefficientsai j (i=1, . . . ,q, j=1, . . . ,q) are cho-
sen so that the required maximal variance and uncorrelated
conditions hold. Since the variances of the principal com-
ponents variables could be increased without limit, simply
by increasing the coefficients that define them, a restriction
must be placed on these coefficients. The constraint usually
applied is that the sum of squares of the coefficients is one
in that way the total variance of all the components is equal
to the total variance of all the observed variables. It is often
convenient to rescale the coefficients in order that their sum
of squares is equal to the variance of the component they de-
fine. In the case of components derived from the correlation
matrix of the data, these rescaled coefficients give the cor-
relations between the components and the original variables.
Those values are often presented as the result of a principal
components analysis. The coefficients defining the principal
components are given by what are known as the eigenvectors
of the correlation matrix,R. PCA transforms the multivariate
set into a set of artificial components (principal components)
based on the symmetric correlation matrix. The procedure

of PCA starts with assigning eigenvalues to each component
for transforming a set of multi variables into a set of compo-
nents.

Principal component analysis is a multivariate technique
that transforms a set of related (correlated) variables into a
set of unrelated (uncorrelated) variables that account for de-
creasing proportions of the variation of the original observa-
tions. The aim is to reduce the complexity of the data by
decreasing the number of variables that need to be consid-
ered. When the derived variables (the principal components)
account for a large proportion of the total variance of the ob-
served variables, they can be used both to provide a conve-
nient summary of the data and to simplify subsequent analy-
ses (Ho, 2006).

Components produced in the initial extraction phase are
often difficult to interpret. This is because the procedure
in this phase ignores the possibility that variables identified
to load on or represent components may already have high
loadings (correlations) with previous components extracted.
This may result in significant cross-loadings in which many
components are correlated with many variables. This makes
interpretation of each component difficult, because different
components are represented by the same variables. The rota-
tion phase serves to “sharpen” the components by identifying
those variables that load on one component and not on an-
other. The ultimate effect of the rotation phase is to achieve
a simpler, theoretically more meaningful component pattern
((Ho, 2006).

2.2 Multiple linear regression

Multiple linear regression is a method of analysis for assess-
ing the strength of the relationship between a set of explana-
tory variables known as independent variables, and a single
response or dependent variable. Applying multiple regres-
sion analysis to a set of data results in what are known as re-
gression coefficients, one for each explanatory variable (Lan-
dau and Everitt, 2004). The multiple regression model for
a response variable,y, with observed values,y1, y2, . . ., yn

(wheren is the sample size) andq explanatory variables,x1,
x2, . . ., xq with observed values,x1i , x2i , . . . , xqi for i=1, . . .,
n, is:

y1 = β0 + β1x1i + β2x2i + . . . + βqxqi + εi (2)

The regression coefficients,β0, β1, . . . , βq, are generally es-
timated by least squares. The termεi is the residual or error
for individual i and represents the deviation of the observed
value of the response for this individual from that expected
by the model. These error terms are assumed to have a nor-
mal distribution with varianceσ2. The fit of a multiple re-
gression model can be judged with calculation of the multiple
correlation coefficient,R, defined as the correlation between
the observed values of the response variable and the values
predicted by the model. The value ofR2 gives the propor-
tion of the variability of the response variable accounted for
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Table 1. Physical-chemical properties of compounds.

Compound Abbr. MW Dipole Molar Vol. logKow pKa Mole. length Mole. width Mole. depth eqwidth Class.∗

(g/mol) (Debye) (cm3/mol) (nm) (nm) (nm) (nm)

Dichloro-acetic acid DCAA 129 2.40 82 0.92 1.48 0.7 0.69 0.52 0.60 HL-ion
Trichloro-acetic acid TCAA 163 1.50 100 1.33 0.70 0.89 0.67 0.41 0.52 HL-ion
Ibuprofen IBP 206 1.29 130 3.97 4.91 1.31 0.77 0.64 0.70 HP-ion
Diclofenac DCF 296 1.48 182 4.51 4.15 1.13 0.91 0.45 0.64 HP-ion
Clofibric acid CFA 214 0.79 155 2.57 3.64 0.95 0.66 0.41 0.52 HP-ion
Naproxen NPX 230 2.74 167 3.18 4.15 1.26 0.69 0.54 0.61 HP-ion
Chloroform CF 119 1.12 80 1.97 N/A 0.53 0.5 0.35 0.42 HL-neu
Primidone PMD 218 4.31 164 0.91 N/A 0.97 0.88 0.48 0.65 HL-neu
Phenacetin PAC 179 2.40 146 1.58 N/A 1.39 0.68 0.42 0.53 HL-neu
Bromoform BF 253 1.00 87 2.40 N/A 0.69 0.65 0.48 0.56 HP-neu
Trichloro-ethene TCE 131 0.95 90 2.29 N/A 0.78 0.66 0.36 0.49 HP-neu
Perchloro-ethene PCE 165 0.11 102 3.40 N/A 0.78 0.77 0.45 0.59 HP-neu
Carbontetra-chloride CT 154 0.30 96 2.83 N/A 0.64 0.64 0.57 0.60 HP-neu
Carbontetra-bromide CTB 332 0.01 112 3.42 N/A 0.69 0.63 0.65 0.64 HP-neu

∗ HL, hydrophilic; HP, hydrophobic; ion, ionic; neu, neutral.

by the explanatory variables. Analysis of variance (ANOVA)
will provide an F-test of the null hypothesis that each ofβ0,
β1, . . . ,βq, is equal to zero, or in other words thatR2 is zero.

3 Materials and methods

3.1 Compounds, membranes and properties

A list of selected compounds is presented in Table 1; this ta-
ble also shows physical-chemical estimations of compound
properties, such as: molecular weight (MW), dipole mo-
ment, water-octanol partition coefficient (logKow), acid dis-
sociation constant (pKa), molar volume (MV), length, width
and depth. Compounds were classified in ionic and neu-
tral considering the acid dissociation constant, compounds
with a pKa greater than 7 or not available (N/A) pka were
selected as neutral, otherwise were ionic, this classifica-
tion is related to acidity of waters, our ionic compounds
dissociate at pH 8. In our case the pKa of all our com-
pounds is less than 7; though the ionic species were disso-
ciated at pH 8. Compounds were classified as hydrophilic
(HL) when logKow was less than 2; and as hydrophobic
(HP) when logKow>2, there are some defined ranges of log
Kow related to lipophilicity (hydrophobicity) of compounds
(Conell, 1989). Values ofpKa were calculated with online
software Sparc (Sparc, 2006). Octanol-water partition coef-
ficients expressed as logKow correspond to neutral molecule
forms and were calculated with software Kowwin (Kowwin,
2006). We acknowledge that hydrophobicity/hydrophilicity
in terms of HP and HL is not different of logKow, it was
only a definition for the sake of a simplified classification
and subsequent analysis. It is important to mention that some
available experimental database values ofpKa and logKow

were used. Calculation of dipole moments was carried
out with commercial software Chem3D Ultra 7 (Chemof-

fice, 2002). Molar Volume (MV) of compounds was cal-
culated as quotient of molecular weight (g/mol) and liq-
uid density of compound (g/cm3), unknown liquid density
values were calculated by Grain’s Method (Lyman et al.,
1990). Molecular size variables, represented by length, width
and depth, were calculated with software Molecular Model-
ing Pro (ChemSW, 2006). Afterwards, an equivalent width
was defined as (width× depth)0.5 to represent the equivalent
width of molecules.

Anhydrous sodium sulfate and sodium chloride were ob-
tained from Fisher Scientific. Potassium hydroxide, potas-
sium chloride, and a buffer solution based on potassium
phosphate, used for water quality maintenance, were also
purchased from Fisher Scientific. Sulfuric acid was pur-
chased from Mallinckrodt Chemicals (USA). Methyl tert-
Butyl Ether (MtBE), used for GC-ECD analysis, and HPLC
grade methanol were obtained from Fisher Scientific. BF,
PCE, CT, CTB, and DCAA were obtained from Aldrich
(USA). CF, TCE, and TCAA were purchased from Fisher
Scientific (USA). IBP and PMD were purchased from Sigma,
DCF from TCI America, PAC from Fluka. CFA, CBM and
NPX were ordered from Aldrich.

The four FilmTec membranes tested were BW-400 (RO),
LE-440 (RO), XLE-440 (LPRO), and NF-90. Additional
tested membranes were Saehan RE-BLR (RO), Saehan NE-
90 (NF), Toray UTC-70UB (LPRO), and Koch CTA (RO).
These membranes were composed of MPD (Metapheny-
lene diamine (Benzene-1,3-diamine)) and TMC (Trimesoyl
chloride (1,3,5-Benzenetricarbonyl trichloride)) except Koch
CTA (cellulose triacetate). Membrane characteristics were
determined by different methods. Membrane hydrophobicity
was characterized by contact angle measurement using a go-
niometer (Model 100-00, Raḿe-hart, Inc., Surface Science
Instrument, Landing, New Jersey). A stirred cell filtration
unit (Amicon) was used to test disk specimens of membranes
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Table 2. Characteristics of membranes.

Membrane BW-400 LE-440 XLE-440 NF-90 RE-BLR NE-90 UTC-70 CTA

Company FilmTec FilmTec FilmTec FilmTec Saehan Saehan Toray Koch
Group (type)∗ PA (RO) PA (RO) PA (LPRO) PA (NF) PA (RO) PA (NF) PA (LPRO) CTA (RO)
MWCO n/a n/a n/a 200 n/a 200 n/a n/a
NaCl Rej. (%) 98 98 98 90 99.5 90 99.6 98
Contact Angle (◦) 57 42 40 60 47 52 54 47
Zeta Potential (mV), pH 8, 10 mM KCl −4.5 −23 −19 −31 −21 −24 −15 −19
J0 (L/m2 hr) 18 18 16 26 15 22 14 18
Oper. Pressure (kPa) 620 550 410 280 480 240 340 550
PWP (L/m2 day kPa) 0.68 0.77 0.92 2.23 0.77 2.17 0.99 0.79

∗ PA polyamide; CTA celullose triacetate

in a dead-end mode for determining the molecular weight
cutoff (MWCO) of membranes using polyethylene glycols
(PEGs), that was done only for the NF membrane (NF-90
and NE-90). The pure water permeability (PWP (L/day-
m2-kPa)) of each membrane was measured, reflecting the
capacity for water to pass through the membrane normal-
ized by transmembrane pressure. For study of electrokinetic
properties, an electrophoresis method for zeta potential mea-
surement has been used with ELS-8000 (Otsuka Electronics,
Japan); in the electrophoresis cell consisting of membrane
and quartz cells, asymmetric electro-osmotic flow occurs due
to the accumulation of ions on the membrane surface during
the electrophoresis method (Shim et al., 2002). A summary
of membrane characteristics used for PCA, is shown in Ta-
ble 2.

3.2 Apparatus, analysis, equipment setup and experi-
mental conditions

A membrane filtration unit SEPA cell of flat-sheet type (Os-
monics, USA) was used for cross-flow tests. The system was
composed of a polymeric membrane, a membrane holder,
pumps with a gear type pump head, needle valves (for the
feed, retentate, and permeate streams), pressure sensors, flow
meters and a reservoir of 120 L. Either varying the pump
head speed or controlling the needle valve in the retentate
stream controlled the feed flow rate, the corresponding cross-
flow velocity, and the trans-membrane pressure. The feed
water temperature was maintained in the range (20–25◦C).
The total membrane surface area in the test cell was approx-
imately 135.8 cm2 and the total cross flow area in the test
cell was approximately 1.45 cm2. All permeates and con-
centrates were not recirculated but wasted in these experi-
ments. Changes in pressures permitted variation of theJ0/k
ratio, a hydrodynamic condition embodying initial flux (J0)
toward the membrane and back-diffusion (k, mass transfer
coefficient, a function of diffusion coefficient and cross-flow
velocity) away from the membrane (Cho et al., 2000). The
system recovery ratio was 10%. Feed concentrations of com-
pounds were 0.1 mg/L. Experiments were carried out at a pH

of 8 and conductivity of 300µS/cm conditioned with KCl.
The membrane was pre-compacted with deionized water for
two hours before starting filtration experiments, experiments
were conducted for 48 h. TheJ0/k ratio was 1 for all ex-
periments reported in this publication. Information about
pressures and permeate fluxes used for the experiments are
presented in Table 2. It is important to mention that the sta-
tistical analysis only corresponds to a unique hydrodynamic
regime in terms ofJ0/k=1. Kimura et al. (2003) established
an experimental protocol for filtration of some hydrophobic
compounds, demonstrating that a “quasi-saturation” of the
tested membrane was reached after about 20 h of operation
using a feed solution of 100µg/L concentration, suggesting
that for low concentration feed, the filtration time should be
extended and a large volume of feed should be circulated in
order to achieve sufficient membrane saturation (Kimura et
al., 2003). In that sense, in our case, 48 h produced adequate
membrane saturation. The issue of fouled membranes was
not addressed during this study, although we think that our
approach may be applicable to fouled membranes using the
same descriptors for compound properties but with changed
membrane characteristics.

EPA sample vials (40 mL) with a screw cap lined with
Teflon were used for sample collection and extraction. Au-
tosampler vials used were 2.0 mL amber glass vials with
a crimp cap and a Teflon-faced seal. Disposable Pas-
teur pipettes (9 inch) were used to transfer extracted sam-
ples. Micropipettes (10–100 mL, 100–1000 mL, and 1–
5 mL) with disposable tips were purchased from Fisher Sci-
entific (USA). A mini-vortexer (VWR Scientific, USA) was
used as an orbital mixer. A Brinkmann bottle top dispenser
was used for adding solvent. An analytical balance (Met-
tler Toledo AT201) was capable of weighing to 0.01 mg.
A diazomethane reaction chamber was used for a step of
HAAs analysis. The GC used was an HP 6890 series GC
system with a micro electron capture detector, an HP7683
autoinjector, an autosampler tray module, and an HP PC.
A DB-1 capillary column coated with dimethylpolysiloxane
(30 m×0.25 mm×1 mm) was employed.
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Table 3. Membrane rejection results after 48 h.

Membrane Compounds and rejections (%)

CF TCE BF CT PCE CTB
LE-440 3 2 7 69 76 89
NF-90 0 3 0 35 39 70
BW-400 4 0 16 78 71 96
XLE-440 10 3 16 69 71 83
RE BLR 34 33 50 90 87 99
NE90 1 0 17 52 57 70
UTC-70 9 6 34 84 57 79
CTA 27 6 2 13 2 N/A

Membrane Compounds and rejections (%)

DCAA TCAA IBP DCF CFA NPX PMD PAC
LE-440 77 95 91 91 87 75 83 56
NF-90 89 87 86 90 86 89 82 45

3.3 Statistical analysis

A demanding evaluation of our study may question the sta-
tistical robustness of our statistical analysis because we have
used limited amount of data (64 cases) representing rejec-
tions of 14 compounds. However this study was conducted
to show that the methodology was correct and statistics could
be applied; we think that future work may allow inclusion
of more data or use of new data that will produce results
similar to our findings. Moreover, we were able to pro-
vide acceptable statistical significance for our more impor-
tant results. Statistical analysis was used to determine which
physical-chemical properties of compounds contributed most
significantly to membrane rejection. The statistical software
package SPSS 14 (SPSS, 2005) was used for analysis. The
performed statistical methods included principal component
analysis (PCA) and multiple linear regression (MLR). The
first step for data analysis was carried out with PCA to re-
duce the number of variables (physical-chemical properties)
that are representative for a group of compounds. Compo-
nents produced in the initial extraction phase are often diffi-
cult to interpret. This may result in significant cross-loadings
in which many components are correlated with many vari-
ables. This makes interpretation of each component difficult,
because different components are represented by the same
variables. The rotation phase serves to “sharpen” the compo-
nents by identifying those variables that load on one compo-
nent and not on another. Orthogonal rotation with varimax
method was used for separation of components, it assumes
that the components are independent; the rotation process
maintains the reference axes of the components at 90◦. The
subsequent analysis of the reduced number of variables was
performed with MLR. The selected method for linear regres-
sion wasstepwise. Stepwise regression is the most sophis-
ticate of statistical methods for multiple linear regression.

Each variable is entered in sequence and its value assessed.
If adding the variable contributes to the model then it is re-
tained, but all other variables in the model are then re-tested
to see if they are still contributing to the success of the model.
If they no longer contribute significantly they are removed.
Therefore, the method should ensure that we end up with the
smallest possible set of predictor variables included in the
model.

4 Results and discussion

4.1 Rejection of compounds by membranes

Table 3 presents results of rejection for compounds corre-
sponding to the membranes with which the experiments were
carried out. All results are from samples taken after 48 hours
of experimental running. Two membrane types were selected
for experiments with all compounds: LE-440 (RO) and NF-
90 (NF).

4.2 PCA for compounds and membranes

Our hypothesis is that a reduced number of variables will ap-
propriately explain rejection qualitatively based on physical-
chemical properties of compounds and membrane charac-
teristics. In order to validate it, we formulated the follow-
ing questions: i) which physical-chemical properties sig-
nificantly represent a compound in a smaller set of vari-
ables? ii) which compounds depending on their proper-
ties were better rejected? iii) which membrane characteris-
tics can describe rejection better? Variables considered for
PCA were molecular weight (MW), dipole moment (dipole),
molar volume (MV), water-octanol partition coefficient ex-
pressed as logKow, hydrophobicity/hydrophilicity (HP) a
dummy variable that takes the value of 0 when the compound
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Table 4. Subsequently we answer question ii) which compounds depending on their properties were better 
rejected? We present Figure 2, a graph of the first and second components scores for each compound. 
That plot helps to visualize the rejection patterns of the fifteen compounds. Scores on the x-axis 
(component 1) may indicate the overall level of rejection, while scores on the y-axis indicate possibly 
differences between compound properties. Clustering of compounds classified according to groups is a 
first notice from the graph. CF (chloroform) clearly appeared outside from the other compounds, 
presenting the lowest rejection (see Table 3) due to small molar volume, equivalent width and length. 
DCF (diclofenac) and PMD (primidone) showed high rejections related to high molar volume. CBM 
(carbamazepine) appears outside of the clustered group of hydrophobic-neutral compounds due to his 
high molar volume and dipole moment when compared to the rest of the compounds in his group. Dipole 
moment also influenced that CFA (clofibric acid) appeared outside of its group. Also notable was the 
clustering of DCAA (dichloroacetic acid) and TCAA (trichloroacetic acid), both compounds presented 
good rejections (Table 3); however their charge prevailed the mechanism of electrostatic instead of size 
exclusion mechanism influencing rejection. BF (bromoform) and TCE (trichloroethene) had low 
rejections due to small length and equivalent width. By contrast, CTB (carbontetrabromide), PCE 
(perchloroethene) and CT (carbontetrachloride) with higher equivalent width and lower values of dipole 
moment than BF and TCE presented better rejections. 

Figure 1. a) Rotated component loadings for all variables; b) Rotated component loadings for reduced variables 
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Figure 2. Component scores for compounds.

is hydrophilic (HL) and 1 when the compound is hydropho-
bic (HP), molecular length (length), molecular width (width),
molecular depth (depth) and equivalent width (eqwidth). Af-
ter the first analysis considering all mentioned variables,
three principal components accounted for 82.7% of the to-
tal variance. Figure 1a shows the rotated component load-
ings graph of all variables in three components, we recognize
that MW and depth presented component cross-loadings. A
second run of PCA, without considering variables MW and
depth, resulted in Fig. 2b, in this case component 1 repre-
sents size with variables width, length, eqwidth and MV; and
component 2 defines clearly hydrophobicity/hydrophilicity,
with variables HP/HL and log Kow. The effect of the vari-
able dipole is not well defined (see Fig. 1a and b), we can
observe cross-loadings for dipole; nevertheless, we decided
to include dipole moment as variable for our statistical mod-
elling with the hypothesis that dipole may influence rejec-
tion. According to Table 4, the first and second principal
components (scaled eigenvectors), explained the largest part
of the total variance, they have eigenvalues of 3.2 and 2.2,

respectively; this accounts to 45.6% and 31.8% of the total
variance. The third principal component has a variance of
0.7 and accounts for a further 9.9% of the variance.

The cumulative % column shows how much of the total vari-
ance was accounted for by the components with eigenvalues
greater than 1. The first two principal components accounted
for 77.4% of the total variance. Thus, we can answer ques-
tion i), we can reduce our first nine variables to seven vari-
ables that can be explained by the first two components of
Table 4. Subsequently we answer question ii) which com-
pounds depending on their properties were better rejected?
We present Fig. 2, a graph of the first and second compo-
nents scores for each compound. That plot helps to visualize
the rejection patterns of the fifteen compounds. Scores on the
x-axis (component 1) may indicate the overall level of rejec-
tion, while scores on the y-axis indicate possibly differences
between compound properties. Clustering of compounds
classified according to groups is a first notice from the graph.
CF (chloroform) clearly appeared outside from the other
compounds, presenting the lowest rejection (see Table 3) due
to small molar volume, equivalent width and length. DCF
(diclofenac) and PMD (primidone) showed high rejections
related to high molar volume. CBM (carbamazepine) ap-
pears outside of the clustered group of hydrophobic-neutral
compounds due to his high molar volume and dipole moment
when compared to the rest of the compounds in his group.
Dipole moment also influenced that CFA (clofibric acid) ap-
peared outside of its group. Also notable was the clustering
of DCAA (dichloroacetic acid) and TCAA (trichloroacetic
acid), both compounds presented good rejections (Table 3);
however their charge prevailed the mechanism of electro-
static instead of size exclusion mechanism influencing rejec-
tion. BF (bromoform) and TCE (trichloroethene) had low
rejections due to small length and equivalent width. By con-
trast, CTB (carbontetrabromide), PCE (perchloroethene) and
CT (carbontetrachloride) with higher equivalent width and
lower values of dipole moment than BF and TCE presented
better rejections.
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Table 4. Principal Components and total variance.

Comp. Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %

1 3.192 45.607 45.607 3.192 45.607 45.607 3.115 44.500 44.500
2 2.228 31.827 77.434 2.228 31.827 77.434 2.305 32.934 77.434
3 0.697 9.959 87.393
4 0.417 5.950 93.343
5 0.215 3.075 96.417
6 0.160 2.292 98.710
7 0.090 1.290 100.000

Table 5. Results of multiple linear regressions.

Case R2 Std. Error of Estimate F Sig. Equation for rejection

Ionic LE440 48h 0.628 5.58 6.75 0.060 101.104–8.885Dipole
Ionic NF90 48h 0.435 1.45 3.08 0.154 85.184+1.559Dipole
Neutr LE440 48h 0.952 10.14 33.07 0.001−118.889+2.503MV−29.830Dipole−86.339length
Neutr NF90 48h 0.868 12.56 19.74 0.002−163.619−30.423HP+386.160eqwidth
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NF-90 membrane involved variables of equivalent width and hydrophobicity/hydrophilicity (Figure 5). It 
seems that equivalent width replaced predictors MV and length as we compare NF and RO membranes. 
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Figure 3. (a) Component loadings for membrane variables;(b) Component scores for membranes.

Results of PCA for membrane characteristics presented
in Fig. 3a suggest that no further reduction of variables is
suitable. Therefore, the answer of question iii) is not pos-
sible considering only the set of variables we have. In gen-
eral nanofiltration membranes (NF-90 and NE90) presented
low membrane rejection when compared to reverse osmo-
sis membranes, excluding CTA. Figure 3b present scores for
each membrane. According to this, LE-440 performed better
than XLE-440; NE 90 better than NF-90, and BW-400 per-
formed better than UTC-70 and RE BLR, in this order BW-
400>UTC-70>RE BLR. Although Fig. 3b describes well the

rejection performances of membranes, the information pro-
vided must be analyzed and disregard misleading results, it
was the case for CTA (compare rejections Table 3), an expla-
nation of it is that CTA is a cellulose triacetate membrane,
which means they have differences with the polyamide mem-
branes; we did not consider this variable (composition) for
analysis.
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Figure 5. NF-90 membrane rejection modeling of neutral compounds. 
 

5. Conclusions 
 
A qualitative analysis of variables using principal component analysis was successfully implemented for 
reduction of physical-chemical compound properties that influence membrane rejection of PhACs and 
organic compounds. Properties of dipole moment, molar volume, hydrophobicity/hydrophilicity, 
molecular length and equivalent width were found to be important descriptors for prediction of membrane 
rejection. For membranes used in the experiments we may conclude that charge repulsion was an 
important mechanism of rejection for ionic compounds. Molecular weight was found to be a poor variable 
descriptor for rejection simulation. We could model membrane rejection of neutral compounds with 
multiple linear regression; real rejection results were well represented by dipole moment, molar volume, 
length, equivalent width and hydrophobicity/hydrophilicity of compounds. A demanding evaluation of 
our study may question the statistical robustness of our statistical analysis because we have used limited 
amount of data (64 cases) representing rejections of 14 compounds. However this study was conducted to 
show that the methodology was correct and statistics could be applied; we think that future work may 
allow inclusion of more data or use of new data that will produce results similar to our findings. We were 
able to provide acceptable statistical significance for important results. 
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4.3 Multiple linear regression

MLR analysis of rejections was separated for ionic and neu-
tral compounds, and for two membranes (LE-440 and NF-
90). Thus, MLR was performed for these cases: 1) ionic
LE440 48 h; 2) ionic NF90 48 h; 3) neutral LE440 48 h; 4)
neutral NF90 48 h. Rejection can be defined as a linear func-
tion with compound properties as variables. In general, we
may assume that rejection can be described by the following
linear equation.

rej=B0 + B1MV + B2HP+ B3Kow + B4 Dipole+ B5 length+ B6 eqwidth

(3)

Inclusion of all variables will give aR2 value approaching
1. However the optimum output implies having the less num-
ber of variables in the equation that may explain or predict re-
jection with appropriate fit and significance. Thus, stepwise
regression will achieve this by adding and removing vari-
ables until an acceptable statistical significance would possi-
bly be reached. The summary of results is shown in Table 5.
We can notice that ourR2 values varied between 0.435 and
0.952. Ionic compounds were less favoured in prediction and
significance. The rejection prediction of ionic compounds
by membrane NF-90 presented the lowest confidence (85%)
and R2 value (0.435). However,R2 value (0.628) and sig-
nificance (96%) improved for ionic compounds and LE-440
membrane. Thus, we may use the models and predictors un-
der certain restrictions when referring to ionic compounds.
The effect of charge repulsion between the membrane and
those charged compounds was evident. On the other hand,
neutral compounds showed acceptableR2 values and good
levels of confidence (>95%). An important observation was
that MW was disregarded as predictor. According to Table 5,
it seems that dipole moment may predict differences in rejec-
tion prediction for ionic compounds. The influence of molar
volume (MV) was more notable for neutral compounds. A
combination of MV, dipole moment and length was able to
predict rejection of neutral compounds by LE-440 membrane
(Fig. 4). The rejection prediction of neutral compounds for
NF-90 membrane involved variables of equivalent width and
hydrophobicity/hydrophilicity (Fig. 5). It seems that equiva-
lent width replaced predictors MV and length as we compare
NF and RO membranes.

5 Conclusions

A qualitative analysis of variables using principal compo-
nent analysis was successfully implemented for reduction
of physical-chemical compound properties that influence
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membrane rejection of PhACs and organic compounds.
Properties of dipole moment, molar volume, hydrophobic-
ity/hydrophilicity, molecular length and equivalent width
were found to be important descriptors for prediction of
membrane rejection. For membranes used in the experi-
ments we may conclude that charge repulsion was an impor-
tant mechanism of rejection for ionic compounds. Molec-
ular weight was found to be a poor variable descriptor for
rejection simulation. We could model membrane rejection
of neutral compounds with multiple linear regression; real
rejection results were well represented by dipole moment,
molar volume, length, equivalent width and hydrophobic-
ity/hydrophilicity of compounds. A demanding evaluation of
our study may question the statistical robustness of our statis-
tical analysis because we have used limited amount of data
(64 cases) representing rejections of 14 compounds. How-
ever this study was conducted to show that the methodology
was correct and statistics could be applied; we think that fu-
ture work may allow inclusion of more data or use of new
data that will produce results similar to our findings. We were
able to provide acceptable statistical significance for impor-
tant results.
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